• Discoverability Visible
  • Join Policy Restricted
  • Created 01 Jul 2022

Main Page

Logo1.png

Welcome to the Ice Sheet Model Intercomparison Project for CMIP6 (ISMIP6) wiki! You are encouraged to use the wiki pages to alter the formulation of numerical experiments, point out any inconsistencies or inaccuracies you find in the data sets, and post results and figures that you’d like others see and discuss. ISMIP6 also has a more official homepage, kindly hosted by CliC.

NEW: ISMIP6 Antarctic 2300 projections. These projections focus on simulations of the Antarctic Ice Sheet extended to year 2300. These new experiments were launched in February 2022 and more details are available here.

What is ISMIP6?

The overall framework for ISMIP6 is designed to deliver projections of the ice sheet contribution to sea level rise. ISMIP6 brings together for the first time a consortium of international ice sheet models and coupled ice sheet – climate models. This effort thoroughly explores the sea level contribution from the Greenland and Antarctic Ice Sheet in our changing climate and assess the impact of large ice sheets on the climate system. Together with the new glacier CliC (Climate and Cryosphere) targeted activity and projections of thermal expansion (that already sit within the CMIP Coupled Model Intercomparison Project framework), this allows sea level to become part of the family of variables for which CMIP can provide routine IPCC-style projections. ISMIP6 is explicitly designed to ensure that ice sheet (hence sea level) projections are fully compatible with the CMIP6 (Coupled Model Intercomparison Project-Phase 6) process. ISMIP6 also provides the basis for investigating the feedbacks, impacts, and sea level changes associated with dynamic ice sheets and for quantifying the uncertainty in ice-sheet-sourced global sea level change.


The proposed experiments both use and augment the CMIP6-DECK (Diagnostic Evaluation and Characetization of Klima), Historical and ScenarioMIP experiments. ISMIP6 uses the standard CMIP AGCM (Atmosphere General Circulation Models) and AOGCM (Atmosphere-Ocean General Circulation Models) experiments for analysis of the climate over and surrounding the ice sheets, and as forcing for the standalone ice sheet models (ISM) projections. Additional sensitivity experiments were performed with the ISM to investigate the uncertainty associated with these projections arising from ice sheet models. The key output is an ensemble of historical and future estimates of ice sheet contribution to sea level. To address the feedbacks introduced by interactive ice sheets, we proposed that a small number of selected DECK experiments are repeated with coupled AOGCM-ISM, where the ice sheet is an interactive component of the AOGCM. Our assessment of the state of existing AOGCMs is that coupled models including an interactive Greenland ice sheet can realistically be expected for CMIP6, however including the Antarctic ice sheet remains challenging (because of the greater complexity of its response to climate forcing, and the issues associated with simulations of the Southern Ocean). It is for these reasons that ISMIP6 heavily relies on standalone ice sheet models driven offline by CMIP6 climate models for projections of sea level.

ISMIP6 activities

ISMIP6 Standalone Ice Sheet Experiments

These pages describe the experimental setup for the standalone ice sheet model simulations. ISMIP6 standalone ice sheet modeling focusses on gaining insight into the uncertainty in ice sheet evolution resulting from the choice of initialization methods (the initMIP efforts for the Greenland and Antarctic ice sheets), understanding the response of the Antarctic ice sheet to a total loss of the ice shelves (ABUMIP), as well as projections of ice sheet evolution for the 21st century.

Greenland

[initMIP-Greenland] focuses on detailed description of the ISMIP6 Standalone Ice Sheet experiments for the initialization for Greenland.

[ISMIP6-Projections-Greenland] focuses on detailed description of the ISMIP6 Standalone Ice Sheet experiments protocols for projections of the Greenland ice sheet evolution.

Antarctica

[initMIP-Antarctica] focuses on the more detailed description of the ISMIP6 Standalone Ice Sheet experiments for the initialization for Antarctica.

[ABUMIP-Antarctica] focuses on understanding the response of the Antarctic ice sheet to weakening and loss of the shelves.

[ISMIP6-Projections-Antarctica] focuses on detailed description of the ISMIP6 Standalone Ice Sheet experiments protocols for projections of the Antarctic ice sheet evolution.

[ISMIP6-Projections2300-Antarctica] focuses on detailed description of the ISMIP6 2300 Projections experiments protocols for projections of the Antarctic ice sheet evolution extended to 2300.

ISMIP6 Coupled Ice Sheet Climate Experiments

[Coupled Ice Sheet Climate Experiments] > This page describes the experimental setup for the coupled ice sheet-climate model simulations.

ISMIP6 Meetings

[Meetings] > Use this page to find out when and where our next meeting will be!

ISMIP6 resources

Datasets

The ‘ for whole ice sheet models can be accessed here.

ISMIP6 logos

Use this page to download ISMIP6 logos.

ISMIP6 Publications

Listed here are the publications related to ISMIP6 so far.

ISMIP6 Participants

ISMIP6 is a community effort that involves scientists interested in the polar regions, ranging from experts in polar remote sensing to modeling. If you would like to be involved in ISMIP6, please email ismip6-at-gmail.com. The co-chairs of steering committee for ISMIP6 includes Sophie Nowicki, Eric Larour, and Tony Payne. The steering committee members are Helene Seroussi, Heiko Goelzer, Andrew Shepard, William Lipscomb, Jonathan Gregory, and Ayako Abe Ouchi. A big thank you to our members contributing to the numerical simulations!

Greenland Standalone Ice Sheet Modeling

Contributors Model Group ID Group
Nick Golledge PISM ARC Antarctic Research Centre, Victoria University of Wellington, NZ
Martin Rückamp,Angelika Humbert ISSM AWI Alfred Wegener Institute for Polar and Marine Research, DE /University of Bremen, DE
Victoria Lee, Tony Payne BISICLES BGC University of Bristol, Bristol, UK
Christian Rodehacke PISM DMI Danish Meteorological Institute, DK
Ralf Greve SICOPOLIS ILTS Institute of Low Temperature Science, Hokkaido University, Sapporo, JP
Ralf Greve, Reinhard Calov SICOPOLIS ILTS_PIK Institute of Low Temperature Science, Hokkaido University, Sapporo, JP / Potsdam Institute for Climate Impact Research, Potsdam, DE
Heiko Goelzer, Roderik van de Wal IMAUICE IMAU Utrecht University, Institute for Marine and Atmospheric Research (IMAU), Utrecht, NL
Helene Seroussi, Nicole Schlegel ISSM JPL NASA Jet Propulsion Laboratory, Pasadena, USA
William Lipscomb, Joseph H. Kennedy CISM LANL National Center for Atmospheric Research, Boulder, CO, USA / Oak Ridge National Laboratory, USA
Fabien Gillet-Chaulet, Olivier Gagliardini Elmer LGGE Laboratoire de Glaciologie et Géophysique de l’Environnement, FR
GRISLI LSCE Laboratoire des sciences du climat et de l’environnement, FR
Fuyuki Saito, Ayako Abe-Ouchi IcIES MIROC Japan Agency for Marine-Earth Science and Technology, JP / The University of Tokyo, Tokyo, JP
Florian Ziemen PISM MPIM Max Planck Institute for Meteorology, DE
Andy Aschwanden PISM UAF Geophysical Institute, University of Alaska Fairbanks, USA
Helene Seroussi, Mathieu Morlighem ISSM UCIJPL NASA Jet Propulsion Laboratory, Pasadena, USA / University of California Irvine, Irvine, USA
Sainan Sun and Frank Pattyn FETISH ULB Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BE
Philippe Huybrechts, Heiko Goelzer GISM VUB Vrije Universiteit Brussel, Brussels, BE


2eaf72a93bd3009b>

Antarctica Standalone Ice Sheet Modeling

Contributors Model Group ID Group
Nick Golledge PISM ARC Antarctic Research Centre, Victoria University of Wellington, NZ
Thomas Kleiner, Johannes Sutter, Angelika Humbert PISM AWI Alfred Wegener Institute for Polar and Marine Research, DE /University of Bremen, DE
Stephen Cornford BISICLESPRELIM CPOM University of Bristol, Centre for Polar Observation and Modelling, UK
Christian Rodehacke PISM0 DMI Danish Meteorological Institute, Arctic and Climate, DK
Fabien Gillet-Chaulet ELMER IGE Laboratoire de Glaciologie et Géophysique de l’Environnement, FR
Ralf Greve SICOPOLIS ILTS Institute of Low Temperature Science, Hokkaido University, Sapporo, JP
Heiko Goelzer, Roderik van de Wal, Thomas Reerink IMAUICE64 IMAU Utrecht University, Institute for Marine and Atmospheric Research (IMAU), Utrecht, NL
Nicole Schlegel, Helene Seroussi ISSM JPL NASA Jet Propulsion Laboratory, Pasadena, USA
Stephen Price, Matthew Hoffman, Tong Zhang MALI LANL Los Alamos National Laboratory, Los Alamos, USA
Aurélien Quiquet, Christophe Dumas GRISLI LSCE Laboratoire des Sciences du Climat et de l’Environnement,Université Paris-Saclay, France
William Lipscomb, Gunter Leguy CISM NCAR National Center for Atmospheric Research
Torsten Albrecht PISM3PAL PIK Potsdam Institute for Climate Impact Research, DE
David Pollard EQNOMEC,GLNOMEC PSU Pennsylvania State University EMS Earth and Environmental Systems Institute, Pennsylvania, USA
Helene Seroussi,Mathieu Morlighem ISSM UCIJPL NASA Jet Propulsion Laboratory, Pasadena, USA / University of California Irvine, Irvine, USA
Sainan Sun and Frank Pattyn FETISH ULB Laboratoire de Glaciologie, Université Libre de Bruxelles, Brussels, BE
Jonas Van Breedam, Philippe Huybrechts AISMPALEO VUB Vrije Universiteit Brussel, Brussels, BE

2f5bcc4e8e55ec6>

Climate Modeling Centers

Climate modeling centers that have expressed an interest in ISMIP6.

Climate model Ice-sheet model Institute/country
CanESM None CCCma/CA
CESM2 CISM NCAR-LANL/USA
CNRM-CM GRISLI CNRM/FR
EC-Earth GrIS DMI/DK
GISS PISM NASA-GISS/USA
INMCM VUB INM/RU
IPSL-CM6 GRISLI IPSL/FR
MIROC-ESM IcIES AORI-UT-JAMSTEC-NIES/JP
MPI-ESM PISM MPI/DE
UKESM BISICLES MetOffice/UK


7a7c91674b4c398d>

What are wiki pages?

Wiki pages are user-written articles on a range of subjects. Any contributor or a group of contributors can create (and own) new articles, and there can be multiple articles on the same wiki, each written by a different author.

Who can make a wiki page?

Any member of this group can create a new article. When creating a new article, the initial contributor can choose to have a defined list of authors, all of whom can edit the page, or have an open, wiki-like format where any group member can contribute.

Getting started

Finding Articles

Questions?

Created on , Last modified on