
RAPPTURE INTEGRATION WITH SUBMIT

Rappture Integration with Submit

Parsing error resulted in empty content. Displaying raw markup below.

== Overview ==

It is possible to use the submit command to execute simulation jobs ge
nerated by Rappture interfaces remotely. A common approach is to creat
e a shell script which can exec'd or forked from an application wrappe
r script. This approach has been applied to TCL, Python, Perl wrapper
scripts. To avoid consumption of large quantities of remote resources
it is imperative that the submit command be terminated when directed t
o do so by the application user (Abort button).

{{{

}}}

=== Python Wrapper Script ===

Submit can be called from a python Rappture wrapper script for remote
batch job submission. An example of what code to insert in the wrapper
 script is detailed here.

An initial code segment is required to catch the Abort button interrup
t.

{{{
import os
import sys
import stat
import Rappture
import signal
import re

def sig_handler(signal, frame):
 if Rappture.tools.commandPid > 0:
 os.kill(Rappture.tools.commandPid,signal.SIGTERM)

signal.signal(signal.SIGINT, sig_handler)
signal.signal(signal.SIGHUP, sig_handler)
signal.signal(signal.SIGQUIT, sig_handler)
signal.signal(signal.SIGABRT, sig_handler)
signal.signal(signal.SIGTERM, sig_handler)
}}}

A second code segment is used to build an executable script that can e

 1 / 5

RAPPTURE INTEGRATION WITH SUBMIT

xecuted using Rappture.tools.getCommandOutput. The trap statement will
 catch the interrupt thrown when the wrapper script execution is Abort
ed. Putting the submit command in the background allows for the possib
ility of issuing multiple submit commands from the script. The wait st
atement forces the shell script to wait for all submit commands to ter
minate before exiting.

{{{
submitScriptName = 'submit_app.sh'
submitScript = """#!/bin/sh

trap cleanup HUP INT QUIT ABRT TERM

cleanup()
{
 echo "Abnormal termination by signal"
 kill -s TERM `jobs -p`
 exit 1
}

"""

submitScript += "submit -v u2-grid python foo.py -i bar.in"
submitScript += "\nwait"

submitScriptPath = os.path.join(os.getcwd(),submitScriptName)

fp = open(submitScriptPath,'w')
if fp:
 fp.write(submitScript)
 fp.close()

os.chmod(submitScriptPath,
 stat.S_IRWXU|stat.S_IRGRP|stat.S_IXGRP|stat.S_IROTH|stat.S_IX
OTH)
}}}

In the previous piece of code you must edit the following line to acco
mpany what file you want to be remotely executed (e.g. foo.py),any inp
ut files you may need (e.g. bar.in), and the grid you want to run it o
n (e.g. u2-grid):

{{{
submitScript += "submit -v u2-grid python foo.py -i bar.in"
}}}

 2 / 5

RAPPTURE INTEGRATION WITH SUBMIT

Also when running this script on vhub you must make sure to include th
e path of files if they are not in your {{{<}}}tool{{{>}}}/bin directo
ry. This can be done by using the 'TOOLDIR' environment variable that
 holds the tool directory in /apps

The standard method for wrapper script execution of commands can now b
e used. This will stream the output from all submit commands contained
 in submit_script.sh to the GUI display. The same output will be retai
ned in the variable stdOutput.

{{{
exitStatus,stdOutput,stdError = Rappture.tools.getCommandOutput(submit
ScriptPath)
}}}

Each submit command creates files to hold COMMAND standard output and
standard error. The file names are of the form JOBID.stdout and JOBID.
stderr, where JOBID is an 8 digit number. These results can be gathere
d as follows.

{{{
re_stdout = re.compile(".*.stdout$")
re_stderr = re.compile(".*.stderr$")

out2 = ""
errFiles = filter(re_stderr.search,os.listdir(os.getcwd()))
if errFiles != []:
 for errFile in errFiles:
 errFilePath = os.path.join(os.getcwd(),errFile)
 if os.path.getsize(errFilePath) > 0:
 f = open(errFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stderror = ''.join(outFileLines)
 out2 += 'n' + stderror
 os.remove(errFilePath)

outFiles = filter(re_stdout.search,os.listdir(os.getcwd()))
if outFiles != []:
 for outFile in outFiles:
 outFilePath = os.path.join(os.getcwd(),outFile)
 if os.path.getsize(outFilePath) > 0:
 f = open(outFilePath,'r')
 outFileLines = f.readlines()
 f.close()
 stdoutput = ''.join(outFileLines)

 3 / 5

RAPPTURE INTEGRATION WITH SUBMIT

 out2 += 'n' + stdoutput
 os.remove(outFilePath)
}}}

The script file should be removed.

{{{
os.remove(submitScriptPath)
}}}

The output is presented as the job output log.

{{{
lib.put("output.log", out2, append=1)
}}}

All other result processing can proceed as normal.

A complete file of the following code maybe downloaded here: [[File(su
bmit.py)]]

{{{

}}}

=== Notes ===

If the file that gets called remotely writes to a file (e.g. foo.out)
and you want to open that file once the remote file is done executing
you must first get the path to the output file:

Instead of this:

{{{
output = open('foo.out', 'r')
}}}

You must instead open it by preceding the file name with the path:

{{{
outputName = 'foo.out'
outputPath = os.path.join(os.getcwd(),outputName)

output = open(outputPath, 'r')
}}}

{{{
}}}

 4 / 5

RAPPTURE INTEGRATION WITH SUBMIT

You can get help with the submit command by using the {{{--help}}} opt
ion

{{{
#> submit --help
Usage: submit [options]

Options:
 -v, --venue Remote job destination
 -i, --inputfile Input file
 -n NCPUS, --nCpus=NCPUS
 Number of processors for MPI execution
 -N PPN, --ppn=PPN Number of processors/node for MPI execution
 -w WALLTIME, --wallTime=WALLTIME
 Estimated walltime hh:mm:ss or minutes
 -e, --env Variable=value
 -m, --manager Multiprocessor job manager
 -M, --metrics Report resource usage on exit
 -W, --wait Wait for reduced job load before submission
 -h, --help Report command usage

Currently available DESTINATIONs are:
 u2-grid

Currently available MANAGERs are:
 ccni-bgl-CO
 ccni-bgl-VN
 ccni-opteron_lammps
 mpi
 parallel
 sbbnl-bgl-CO
 sbbnl-bgl-VN
 sbbnl-bgp-DUAL
 sbbnl-bgp-SMP
 sbbnl-bgp-VN
}}}

{{{
}}}

For more information please visit: [https://hubzero.org/documentation/
0.9.0/tooldevs/grid.rappture_submit HUBzero Submit Documentation]

Powered by TCPDF (www.tcpdf.org)

 5 / 5

http://www.tcpdf.org

