Remote Sensing of Volcanic Gas Emissions

-120 140 **Simon Carn** Contributors: N.A. Krotkov, K. Yang, A.J. Prata, A.J. Krueger, W.I. Rose, G.J.S. Bluth, V.J. Realmuto, I.M. Watson Mass Comi

Overview

- Motivation for volcanic gas measurements
- Development of satellite remote sensing of SO₂
- Remote sensing theory (focus on SO₂ measurements)
- Survey of space-based SO₂ sensors
 - UV sensors: OMI, TOMS, GOME-2
 - IR sensors: MODIS, ASTER, TOVS, AIRS, IASI
- Application of Aura/OMI SO₂ data to volcano monitoring
 - SO₂ burden calculations
 - Burdens vs. emission rates
- Satellite sensor synergy: NASA's A-Train
- Ground-based FTIR multi-gas measurements

Volcanic gas compositions

	Nyiragongo	Kilauea*	Merapi*	Etna*
mol%	(DR Congo)	(Hawaii)	(Indonesia)	(Sicily)
	RIFT	HOTSPOT	SUBDUCTION	SUBDUCTION
H ₂ O	70	37	91	48
CO ₂	24	49	5	20
SO ₂	5	12	1	31
СО	1	2	0.1	0.4
HCI	0.3	0.08	0.6	-
HF	0.1	-	0.04	-

Trace constituents: CH₄, N₂, BrO, Zn, Cu, Hg, Au, As, Re, He, Ne, Ar....

*Symonds et al. [1994]

Motivation for volcanic SO₂ measurements

- SO₂ is the most abundant gas in volcanic emissions that can be easily measured by remote sensing techniques
 - Low background concentrations (cf. H_2O , CO_2)
 - No other major sources above the planetary boundary layer (PBL)
 - Well-characterized spectral absorption bands (UV, IR, microwave)
- Released from magma at high temperature and low pressure
 - Can indicate fresh magma rising within a volcanic system
 - Signature of magmatic eruptions with potential for high altitude eruption columns
 - H₂S (hydrogen sulfide) is the more stable sulfur species at high pressures and low temperatures (e.g., fumarole fields)
- Environmental, health and climate impacts (sulfate aerosol)

Temperature and pressure effects on volcanic gas species

Pre-eruptive volcanic degassing

Increase in SO₂ emissions prior to a major eruption

SO₂ flux and LP seismicity at Galeras (Colombia)

FIG. 2 SO₂ flux in metric tons per day (\bullet) and durations of recorded long-period (\geq 22 s) events (vertical bars) plotted against time, also showing the eruptions during the same time period. The SO₂ flux is measured using correlation spectrometer (COSPEC) methodology¹⁵. Uncertainty depends mostly on recorded wind speeds. The error at

Galeras is assumed to be $\pm 20\%$, in general, and $\pm 40\%$, in the worst case. True SO₂ flux is likely to be higher than the calculated value. The three phases reflect changes in fluid dynamics along pathways through which gases flow, as interpreted from seismic and gas flux data.

[Fischer et al., Nature, 1994]

SO₂ emissions and RSAM at Fuego (Guatemala)

FTIR gas ratios at Etna

• Volatile solubility: $F/CI \ge H_2O > SO_2 > CO_2$

• Petrological data needed to interpret gas data

[Allard et al., 2005]

Volcanic gas monitoring techniques

COSPEC

Volcanic gas monitoring techniques

Technique	Gases	Hazard	Cost	Frequency
Direct sampling	Total gas composition	High	Low	Low
In-situ sensors	SO ₂ , H ₂ S, CO ₂	High	Low	High
COSPEC	SO ₂	Moderate	\$10k	≥ Minutes
Mini-DOAS	SO ₂ , BrO, NO ₂ , CIO	Moderate	\$10k	1 Hz
FTIR	SO ₂ , CO ₂ , H ₂ O, HCI, HF	Moderate	\$40k	1 Hz
UV camera	SO ₂	Low-Mod	\$20k	>1 Hz
IR camera	SO ₂	Low-Mod	\$20k	Seconds
Satellites	SO ₂ , HCI (strat.), CO ₂ ?	None	Free	≥15 minutes

• In addition, variation in spatial coverage and atmospheric interference

Electromagnetic spectrum – SO₂ absorption

UV SO₂ and O₃ absorption spectra and instrument bands

IR-active trace gases and instrument channels

What about H₂S?

- May be a significant component of total S budget at some volcanoes
- Mid-UV absorption bands require active source
- IR absorption bands are very weak

Detection of HCI in volcanic clouds from space

Create the Future

- * HCI only detected in May 6 eruption cloud
 - Maximum HCI vmr of ~2 ppbv at 146 hPa
- [∗] SO₂/HCI (mass) = ~30
 - HCI mass loading = ~100 tons

GOSAT: Measuring CO₂ from space

• NASA Orbiting Carbon Observatory (OCO) – failed at launch

• Japanese Greenhouse Gas Observing Satellite (GOSAT)

- Launched January 2009; polar orbit with 1300 LECT
- Fourier Transform Spectrometer (FTS) and Cloud-Aerosol Imager (CAI)
- TANSO-FTS sensor measures CO_2 and CH_4 columns and profiles in SWIR/TIR $-60 = O_2 = O_2$
- 0.2 cm⁻¹ spectral resolution, 10.5 km diameter FOV
- 56,000 observation points over land; sunglint obs over land; success land; succe
- Special observation 'stare' mode
- ppm-level sensitivity to changes in CO₂ column^{Column averaged dry air mole fraction)} (uncalibrated data)
- \bullet Evaluation of GOSAT data for volcanic CO_2 detection underway

380

370

360

180

120

390 [ppm]

150

UV Backscatter instrument - basic operation

Forward-model SO₂ retrieval (e.g., TOMS, OMI)

- Simulate at-satellite UV radiances as a function of viewing geometry, latitude, column O₃ and SO₂ amounts, surface pressure and reflecting surface conditions, using a radiative transfer model
- Compare measured normalized radiances with theoretical radiances calculated for the conditions of the measurement
- Derive column O₃ and SO₂ amounts in the scene by finding the values that give a computed radiance equal to the measured radiance
- Errors: highest in the presence of significant ash or sulfate aerosol, and at scan edges

Differential Optical Absorption Spectroscopy (DOAS)

Measured UV-visible spectra contain overlapping structures due to the solar spectrum (Fraunhofer lines), elastic scattering, trace gas absorption, aerosol absorption and the Ring effect (inelastic Raman scattering)

Absorption cross-sections of trace gases in the 200-700 nm wavelength range

Beer-Bouguer-Lambert (Beer's) Law

For a gaseous absorber, the absorption coefficient (β) is written as the product of an absorption cross-section (σ , cm²) and the number density of absorbers (N, molecules cm⁻³):

- Beer's Law applies to direct beam only
- Deviations from Beer's Law occur at high concentrations

Use of SO₂ calibration cells

UV Camera (Dalton et al., 2009)

Fig. 1 FLYSPEC components consisting of a miniature spectrometer, sub-notebook computer, and GPS. High and low calibration SO₂ gas cells are shown mounted above the spectrometer and telescope. The "telescope" is a fiber-optic collimating lens mounted directly to the spectrometer input aperture. The lens, in combination with the UV band-pass filter window mounted on the case, provides a field of view of approximately 2.5°. Power for the spectrometer and GPS is supplied by the computer

FLYSPEC (Horton et al., 2005)

Detection of April 1982 El Chichon SO₂ cloud with the Total Ozone Mapping Spectrometer (TOMS)

[Krueger, Science, 1983]

Volcanic SO₂ clouds measured by TOMS

Volcanic SO₂ Emissions Inventory

Aura - Ozone Monitoring Instrument (OMI)

- UV/VIS sensor that succeeded TOMS
- Dutch/Finnish contribution to NASA's EOS/Aura mission (launched July 2004)
- Daily contiguous global coverage
- 13 x 24 km nadir footprint best ever for UV measurements from space
- Overpass at 1:30-2:00 pm local time
- Data publically available and free
- Row anomaly since August 2008 some data gaps
- The first space-borne sensor to provide daily, global SO₂ measurements with sensitivity to the lower troposphere (i.e., passive degassing)

Infrared Atmospheric Sounding Interferometer (IASI)

- 3.4 15 µm (infrared) wavelengths
- High spectral resolution, Fourier transform interferometer
- Mapping and vertical profiling of SO₂ possible
- 25 km horizontal resolution, 1 km vertical resolution
- Covers 3 SO₂ absorption bands in the IR
- Measurements at 9:30 am and 9:30 pm local time (IR)
- High sensitivity to eruptions; degassing may be detectable

ULB-SA/CNRS - IASI - BTDSO2(K) - Overview from 20080712 to 20080723

Up to 7 daily SO₂ measurements from UV/IR sensors

Satellites equatorial overpass solar local time

Create the Future

Satellite instruments - UV

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?
Total Ozone Mapping Spectrometer (TOMS)	Nimbus-7, Meteor-3, ADEOS, Earth Probe	Nov 78 – Dec 94 Jul 96 – Dec 2005	Yes
Global Ozone Monitoring Experiment (GOME)	European Remote Sensing Satellite (ERS-2)	July 95 – present	No
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)	European Environmental Satellite (Envisat-1)	Sept 03 – present	No
Ozone Monitoring Instrument (OMI)	NASA EOS Aura	Sept 2004 – present	Yes (until late 2008)
Global Ozone Monitoring Experiment-2 (GOME-2)	MetOp A, B, C	Oct 2006 - present	No
Ozone Mapping and Profiler Suite (OMPS)	National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP)	2011?	Yes

Operational SO₂ data products

Satellite instruments – Microwave & IR

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?
Microwave Limb Sounder (MLS)	Upper Atmosphere Research Satellite (UARS), EOS Aura	1991 – 1994 (UARS) 2004 – (EOS Aura)	No
High Resolution Infrared Radiation Sounder (HIRS , HIRS/2)	TIROS-N, NOAA-6-14	Oct 78 – present	Yes (day/night)
Moderate Resolution Imaging Spectroradiometer (MODIS)	EOS Terra, Aqua	Feb 2000 –	Yes (day/night)
Advanced Spaceborne Thermal Emission & Reflection Radiometer (ASTER)	EOS Terra	Feb 2000 – (request only)	No
Atmospheric Infrared Sounder (AIRS)	EOS Aqua	Sept 2002 –	No
Spinning Enhanced Visible and Infrared Imager (SEVIRI)	Meteosat Second Generation (MSG)	2004 —	No
Infrared Atmospheric Sounding Interferometer (IASI)	MetOp A, B, C	Oct 2006 -	No

Satellite instrument footprints (nadir)

UV instrument SO₂ sensitivity

Instrument	Footprint	Sensitivity (DU) 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ	
	area (Km²)	Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km
EP TOMS	1521 (39×39)	3.5	7	3900	7800
GOME	12800 (40×320)	0.2	0.4	3600	7100
SCIAMACHY	1800 (30×60)	0.2	0.4	125	251
GOME-2	3200 (40x80)	0.2	0.4	460	914
ОМІ	312 (13×24)	0.2	0.4	43	87
OMPS	2500 (50×50)	0.2	0.4	350	700

Instrument	Footprint	Sensitivity (DU)* 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ	
	aiea (KIII-)	Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km
MODIS	1 (1×1)	9	250	6	174
ASTER	0.008 (0.09×0.09)	9	250	0.05	1.4
AIRS	143 (d = 13.5 km)	1	30	100	2986
SEVIRI	23 (4.8×4.8)	9	250	144	4009

*Based on *Realmuto* [1999], AGU Geophysical Monograph 116, p101-115 (except AIRS)

Units for SO₂ column amount measurements

1 Dobson Unit (DU) = 1 Milli Atm cm 1 DU = 0.01 mm thickness at STP e.g. 800 DU = 8 mm thick layer 1 DU = 10 ppmm at STP

• Satellites provide measurements of 'column amount' or 'total column' SO₂

- US units: Dobson Unit (DU)
- 1 DU = 2.69×10¹⁶ molecules cm⁻² = 0.0285 g m⁻² SO₂
- European units: molecules cm⁻²
- *Milli atm cm* also used (same as DU)
- Typical values in volcanic clouds
 - Fresh eruption cloud: 100s 1000+ DU
 - Non-eruptive degassing: <20 DU
 - Measured column amount depends on spatial resolution of sensor
 - Can be converted to mass or concentration (if cloud thickness is known)
- Emission rate not directly measured
UV radiation penetrates clouds

Fig. 7. CloudSat 2B-Tau cross section of cloud extinction (km⁻¹) along OMI orbit 12 402 (western track in tropical Pacific highlighted in Fig. 6); Averaged along-track over OMI pixel (~13 km); Pink triangles: OMI optical centroid cloud pressure; Purple diamonds: MODIS minimum cloudtop pressure within closest passive sensor footprint, orange-filled where MODIS maximum multi-layer flag >2.

(Joiner et al., ATMD, 2009)

• IR cloud top ≠ UV cloud pressure

CLOUD SLICING MEASUREMENTS OF OZONE INSIDE THICK CLOUDS

Fig. 4. Schematic diagram illustrating the ensemble cloud-slicing method. The figure shows that a satellite UV instrument is sensitive to the O_3 column from the top of the atmosphere down to the OCCP altitude which may lie several hundred hPa below geometrical cloud top. The lower half of the figure illustrates that using an ensemble of such measurements over a fixed region, mean volume mixing ratio can be determined from the slope of column O_3 plotted versus OCCP.

(Ziemke et al., ACP, 2009)

OMI data products – SO₂

OMI data products – Cloud fraction

Detection of passive SO₂ degassing with OMI

OMI and ASTER: Nyiragongo (DR Congo), Jun 19, 2007

• Plume extent relative to size of satellite FOV constrains detection of degassing plumes from space

Effect of volcanic plume altitude on SO₂ retrievals

- Knowledge of SO₂ cloud altitude is critical for accurate SO₂ retrieval
- Satellite sensitivity increases with altitude in the troposphere

[Krotkov et al., IEEE TGRS, 2006; Yang et al., JGR, 2007]

Relative sensitivity of UV and IR measurements

Courtesy of L. Clarisse, ULB

Prata and Bernardo, 2007

IR channels at ~4 µm and ~8.6 µm can detect lower tropospheric SO₂

Direct retrieval of SO₂ altitude from UV radiances

• Midlatitude O₃ profile, 325 DU, nadir, clear sky, SZA=45°

[Yang et al., GRL, 2009]

Daily OMI SO₂ measurements

http://so2.gsfc.nasa.gov

• Satellites measure column amounts of gases, NOT emission rates

Daily OMI SO₂ measurements for Kilauea

Kilauea plume SO₂ burdens: 2004-2009

Kilauea plume SO₂ burdens: 2004-2009

Kilauea plume SO₂ burdens: 2008-2009

Reventador (Ecuador) seismicity and OMI SO₂ data

[Carn et al., JVGR, 2008]

Volcanic SO₂ flux measurements

Comparing OMI SO₂ burdens with SO₂ emission rates (Kilauea)

Create the Future

SO₂ flux estimation from satellite data

- Satellite 'snapshots' measure SO₂ burden, not flux
- To first order, SO_2 emission rates can be inferred using the SO_2 burden and

an estimate of the SO₂ lifetime

- SO₂ lifetime short (hours) at low altitudes and in humid environments
- May be a few hours in tropical boundary layers

$$Q = \frac{M}{\tau}$$

• Q = SO₂ emission rate (tons/day), M = SO₂ burden (tons), τ = SO₂ lifetime (days)

- Similar approach used to estimate smoke emissions from fires [*Ichoku and Kaufman*, 2005]
- Note that asymmetry of OMI pixel affects plume detection

SO₂ flux estimation from satellite data (Turrialba)

• Comparison between Turrialba SO₂ emission rates derived from ASTER, OMI and UV camera [*Campion et al.*, in prep.]

OMI SO₂ websites - NRT

Latest OMI_SO2 Column 5Km by Volcano

Alaska, USA	Aleutian Islands, Alaska, USA	Anatahan, Mariana Islands	Cascade
Central America	Comoro Islands	Eastern China	Ecuador
Etna, Sicily, Italy	Galapagos Islands, Ecuador	Hawaii, USA	Iceland
Japan	Java, Indonesia	Kamchatka, Russia	Mexico
Montserrat, West Indies	New Zealand	North Western Europe	Northern Atlantic
Northern Chile	Nyiragongo, DR Congo	Peru	Philippines
Papua New Guinea	Red Sea	Reunion Island	Southern Chile
Sulawesi Sangihe, Indonesia	Sumatra, Indonesia	Tanzania	Vanuatu, South Pacific

DISCLAIM: This page is experimental and for testing purpose only

For AIRS SO2 products check the AIRS SO2 Alert Site

Near real-time: http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html

Operational OMI SO₂ data from NASA Mirador

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml

Near real-time OMI SO₂ data from NASA LANCE

http://lance.nasa.gov/data-producers/omi-sips/omi-sips-products/ (Registration required)

Aura/OMI - Aura/MLS: Anatahan (CNMI), April 7, 2005

Aura/OMI - Aqua/AIRS: Sierra Negra (Galapagos) 2005

- Sierra Negra (Galapagos) eruption, October 24, 2005
- OMI-AIRS synergy indicates SO₂ concentrated in the lower troposphere

Kilauea degassing – April 7, 2008

Summary

- Numerous satellite sensors now provide SO₂ measurements
- Some have standard SO₂ products, others require application of retrieval algorithms to yield quantitative SO₂ data
- Aura/OMI is an economical and effective tool for monitoring volcanic SO₂ degassing on a regional or local (single volcano) scale
- OMI's high SO₂ sensitivity and global coverage allows detection of nearly all significant volcanic eruption clouds, assisting aviation hazard mitigation and improving our understanding of the atmospheric impacts of volcanism
- Detection of tropospheric SO₂ plumes by OMI depends on several factors, hence the lower detection limit in terms of SO₂ flux is variable (with latitude, vent altitude etc.)
- Altitude sensitivity must be considered when evaluation satellite SO₂ data
- New satellite constellations (A-Train) provide opportunities for sensor synergy and '3D' analysis of volcanic clouds
- Many datasets are now available online in near-real time

Fourier Transform Infrared (FTIR) Spectroscopy

- Basis of many IR satellite remote sensing instruments
- Ground-based FTIR spectrometers also used for various applications

Absorption spectroscopy

FTIR deployment modes (absorption)

Fig. 2. Diagrams showing modes of FTS deployment. (a) and (b) are from Oppenheimer et al. (1998). (a) Infrared lamp or hot rocks used as source over a specified pathlength. (b) Sun used as infrared source. Both the lamp and Sun can be used as IR sources at the summit or at different distances downwind from the volcano. A Newtonian telescope is used to collimate the light into the spectrometer. (c) Sun used as infrared source and a Sun-tracker allows cross-sectional traverses beneath the plume. This can also be used in a fixed position instead of using the Newtonian telescope.

FTIR at Erta 'Ale (Ethiopia)

Fig. 2. Photograph of Erta 'Ale lava lake from the observation site on the north eastern rim of the central pit. The black circle approximates the 1.5 m 'footprint' of the FTIR spectrometer.

[Sawyer et al., 2008]

FTIR at Erebus (Antarctica)

[Oppenheimer et al., 2008]

Gas ratios at Nyiragongo, 2005-2007

FTIR gas ratios at Etna

• Volatile solubility: $F/CI > H_2O > SO_2 > CO_2$

• Petrological data needed to interpret gas data

[Allard et al., 2005]
Change in gas ratios prior to eruption at Masaya

Dome growth and HCI/SO₂ at Soufriére Hills volcano

E = Iava effusionP = pause

[Christopher et al., GRL, 2010]

Nocturnal volcanic plume studies

 $SO_2/HCI (night) = 2.2\pm0.28 (\pm 1\sigma).$ $SO_2/HCI (day) = 1.6\pm0.02 (\pm 1\sigma).$

[Burton et al., 2001]