

Outline

- Introduction
- Geodetic monitoring
- ground deformation
- A multi-parameter perspective
- gravimetry

Introduction

A definition of volcanic unrest:

A deviation from the background or baseline behaviour of a volcano towards a level of activity, which is cause for concern in the short-term (hours to few months) because it might be a prelude to an eruption

Volcanic unrest riskometer

The problem

- Our knowledge of the causative links between subsurface processes, resulting unrest signals and imminent eruption is, today, wholly inadequate to deal effectively with crises of volcanic unrest.

Questions?

- What is the cause of unrest?
- What is the consequence/outcome?
- When will it be over?

more problems:

- few volcanoes are persistently active
- many volcanoes show periods of dormancy (repose) over many hundreds or thousands of years in between eruptions
- volcanic unrest does NOT necessarily culminate in eruption
- How to know if a volcano reactivates?
- How to predict future behaviour?

The answer:

DATA

...and here is our next problem!

Where, when and how to get what data?

- Geological data
- Geophysical data
- Geochemical data

....and yet another problem!

The orchestra of signals (space and/or time domain)

Magmatic signals: melt, fluids, convection, chemical differentiation, thermal evolution, rejuvenation, loss

Tectonic signals: active faulting, local/regional stress field
Aquifer signals: aqueous fluid migration, phase changes, T and/or P effects
Meteoric signals: precipitation, P and T effects

RESERVOIR CHARACTERISATION

Problem: lack of mechanistic understanding of
processes and their role as signal transmitters!

Classic scope of geodetic monitoring programs

- perform dynamic investigations
- record signals

Geodetic monitoring

- Ground deformation (ground-based, air-borne and space-borne):
$\Delta V \approx f\left(\Delta U_{z}, \Delta U_{r}\right)$
- Gravity (ground-based):
$\Delta M \approx f\left(\Delta g_{z}\right)$
- integrated geodetic investigations have unique capability to characterise the nature of causative source:
we can thus discriminate between aqueous fluids (density $\sim 1000 \mathrm{~kg} / \mathrm{m} 3$)
and
magma (density ~2500 kg/m3)

Ground deformation

- InSAR, LIDAR, GNSS (GPS and GLONASS), EDM, levelling, strainmeters

InSAR: Interferometric Synthetic Aperture Radar

Full phase shift (2π) equals 28.3 mm displacement in the LOS =
I color fringe in interferogram
\square

GNSS

- Global Navigation Satellite System
- Developed by the US Department of Defense (GPS), USSR/Russian Space Forces (GLONASS)
- provides 3-D position, velocity, and time $24 / 7$ anywhere in the world via trilateration
- free for civilian use
- 5 freq LI-5
- dual frequencies (LI and L2) or single (LI) frequency receivers,
- dual freq rec. generally give higher precision.

How do we obtain data?

- Antennas and receivers/controller (2 kits min if no existing network available)
- Costs: anything from between $£ 5 \mathrm{k}$ and $£ 30 \mathrm{k}$ per unit
- campaign-style surveys
- continuous observations

Continuous observations

- installation as reference
- running 24/7
- enables fix on location in 3-D (x, y, z)
- with high precision (mm precision both horizontal and vertical)

things to look out for:

- safe location
- monument stability
- protection against elements
- accessibility
- good sky visibility
- secure power supply
- data storage/data transfer

How to obtain data

- options for different occupation modes
- most used for monitoring: static observations
- operate at least one reference and several rovers (can be installed for any desired period of time)
- process baselines between rover and reference

Errors

Sources of User Equivalent Range Errors (UERE)
lonospheric effects $\pm 5 \mathrm{~m}$ Ephemeris errors $\pm 2.5 \mathrm{~m}$ Satellite clock errors $\pm 2 \mathrm{~m}$ Multipath distortion $\pm 1 \mathrm{~m}$ Tropospheric effects $\pm 0.5 \mathrm{~m}$ Numerical errors $\pm 1 \mathrm{~m}$

Post-processing

- process data against a known reference (relative displacement vectors)
- reference station may be your own with good fix on position
- alternatively use service such as SCOUT

Miyakejima eruption 2000

me series of 6-hour coordinates in selected GPS baselines.Arrows indicate the onset of eruptions of Miyakejima volcano and major earthquakes.

Ground deformation from GPS data: Nisyros , Greece

Campi Flegrei 2006 uplift

\qquad

EARTHSCOPE:"magmatic" GPS deployments

Gravimetry for volcano monitoring

- Not standard tool
- time lapse micro-gravity surveys
- continuous gravimetric observation
- detection of changes in the acceleration due to Earth's gravity

Classic setup

Field setup for gravity network

- Selection of reference outside area of interest
- installation of benchmark (BM)
- measurement of gravity difference between reference and BM
- location and elevation measured by GNSS or theodolite

Errors

- Instrument drift (mechanical failure of spring)
- Tares (sudden jumps in reading due to mechanical readjustment: permanent or retrievable)

Gravity reduction

- Earth and Ocean tides
- Drift
- Free air correction: $-0.3086 \mathrm{mGa} / \mathrm{m}$ (use elevation data from GNSS)
- contribution from ground water table variations
- deformation effects (source dependent)
- NO: latitude, Bouguer or terrain corrections (needed for static gravity surveys though)
- Scope: quantification of spatial and temporal evolution of volcanic system
- residual gravity changes on order of few to hundreds of microGal $\left[10^{-8}\right.$ to $\left.10^{-6} \mathrm{~m} / \mathrm{s}^{2}\right]$
$\Delta g_{r}=g_{o b s}-g_{t i d e}-\left(\frac{\delta g}{\delta z}\right)_{0} \Delta_{h}-\Delta g_{w t}-\Delta g_{d e f}$

Time series

- Repeated periodic occupation of network (e.g., monthly, yearly, every 2.5 years)
- Continuous observations (eg., < IHz)

Gravity time series example from Asama volcano, Japan

Example II: Central Volcanic Complex, Tenerife

(Gottsmann et al., 2006: GRL)

- ground deformation and gravity data 2004-2005
- gravity changes up tp 0.045 mGal but no significant ground deformation
- aqueous fluid migration at shallow (ca. 2000 m below surface)

Residuals WT-corr. Residuals

Ground deformation data alone would not have yielded much!

The potential pitfall of time-lapse observations

The real period of such a signal (and thus any hypothesis about its source) remains ambiguous.
This ambiguity cannot be solved in the time domain (Nyquist limit).

Aliased data?

Campi Flegrei I 987 onwards

Cgrav measurements

- Deployment of continuously recording gravimeters in survey area
- Gravity and surface deformation recorded jointly and simultaneously
- Spring meters: L\&R Aliod system, L\&R ET meters, Scintrex CG-5, Automated Burris Gravity Meter
- Powerful method especially when linked with other geophysical observations

Carbone et al, 2008: GRL

Multi-parameter perspective

- No single technique can provide all answers
- Need to think outside the box
- Need for multi-parameter analysis

Example: Nisyros caldera

Multiparameter experiment 2006:
I automated gravimeter, 2 field gravimeters
I broadband seismometer, 3 GPS receivers, I very low freq. electromagnetic receiver

Assessment of causative source(s) via data modelling

Forward models: predict signal from known source
via trial and error to match recorded signal

Inverse models: use signal to obtain (invert for) the source characteristics

Data worth having: -3-D vector field of surface displacement -mass variations in both space and time
-static data

Geyer and Gottsmann, 2010

Conclusions (I)

- Volcano geodesy is an ever evolving field
- New techniques
- Increasing computational power
- Remote techniques essential
- Field work indispensable (ground truthing!!!)

Shareholders in volcano unrest (geodetic signals)

Conclusions (II)

- no single solution to address the problem of how to best track mass/ density variations beneath volcanoes
- each case needs dedicated analysis for network design
- integrated geodetic investigations are a powerful component of volcano monitoring
- observed geodetic data need to be considered within the general context of the available volcanological and geological observations
- integrated analysis and multiparameter interpretation is essential

Conclusions (III)

- Data essential for appraisal of volcanic phenomena
- essential for forecasting
- stochastic and non-linear processes?
- probabilistic models
- volcano memory?
- Increasingly vulnerable population (500 mio people in vicinity of active volcanoes)
- fundamental input for hazard assessment and risk mitigation in addition to geologic data

Current limitations and future opportunities

- Non-uniqueness of geodetic modelling
- Data aliasing (indiv. obs. over years)
- Stability of reference
- Cross-correlation with other techniques
- Combine campaign, cont. and static measurements
- Fully integrated geodetic observations

Selected further reading

Volcano Deformation (general)

- GNSS Processing: http://www.usace.army.mil/publications/eng-manuals/em | | |0-|-|003/c-I.pdf to c-I0.pdf
- Encyclopedia of Volcanoes (also for gravimetry)
- Volcano Deformation by Daniel Dzurisin (Springer)
- Earthquake and Volcano Deformation by Paul Segall (Princeton Univ. Press)

Volcano Gravimetry

- Gottsmann and Battaglia 2008, in: Caldera Volcanism, Developments in Volcanology IO, Elsevier
- Battaglia et al., Geophysics 73, 2008
- Williams-Jones et al., Geophysics 73, 2008)
- General geodesy: http://landau.mines.edu/~samizdat (J.Wahr, Geodesy)

