Volcano unrest: a ground-based geodetic
perspective
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Introduction

A definition of volcanic unrest:

A deviation from the background or baseline
behaviour of a volcano towards a level of activity,
which is cause for concern in the short-term (hours
to few months) because it might be a prelude to an
eruption




Volcanic unrest riskometer
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“right” time to “right” time to
take Action 1 take Action 2




The problem

® Our knowledge of the causative links between subsurface
processes, resulting unrest signals and imminent eruption is, today,
wholly inadequate to deal effectively with crises of volcanic unrest.




Questions!

® What is the cause of unrest?
® What is the consequence/outcome?

® When will it be over?




more problems:

few volcanoes are persistently active

many volcanoes show periods of dormancy (repose) over many
hundreds or thousands of years in between eruptions

volcanic unrest does NOT necessarily culminate in eruption
How to know if a volcano reactivates!?

How to predict future behaviour?




The answer:

DATA

...and here is our next problem!




Where, when and how to get
what data?

® Geological data
® Geophysical data

® Geochemical data




....and yet another problem!

Crater
This is ereated offer an eruption
when the top is blown off the voleano Main uent

The main outlet
for the magma source: USGS

'y uent to escape
Smaller outlets through

which magma escapes

Magma
A collection of
mogma inside the
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The orchestra of signals
(space and/or time domain)

Magmatic signals: melt, fluids, convection, chemical differentiation, thermal
evolution, rejuvenation, loss

Tectonic signals: active faulting, local/regional stress field
Aquifer signals: aqueous fluid migration, phase changes, T and/or P effects

Meteoric signals: precipitation, P and T effects

RESERVOIR CHARACTERISATION




Classic scope of geodetic
monitoring programs

® perform dynamic investigations

® record signals

to quantify spatial and temporal evolution of volcanic system




Geodetic monitoring

® Ground deformation (ground-based, air-borne and space-borne):

AV ~ f(AU, AU,)

® Gravity (ground-based):

AM =~ f(Ag,)




® integrated geodetic investigations have unique capability to characterise the nature
of causative source:

AM
P= AV

we can thus discriminate between aqueous fluids ( density ~1000kg/m3)
and
magma (density ~2500 kg/m3)




Ground deformation

® InSAR, LIDAR, GNSS (GPS and GLONASS), EDM, levelling,
strainmeters




InSAR: Interferometric Synthetic Aperture
Radar

Pass 1: Before earthquake Pass 2: After earthquake

Full phase shift (2rt)equals 28.3
mm displacement in the LOS =
| color fringe in interferogram

0mm 7 mm 14 mm 21 mm 28 mm

range change
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GNSS

* Global Navigation Satellite System

* Developed by the US Department of Defense (GPS), USSR/Russian Space Forces
(GLONASYS)

* provides 3-D  position, velocity, and time 24/7 anywhere in the world via
trilateration

* free for civilian use

* 5freqLI-5

¢ dual frequencies (LI and L2) or single (L1) frequency receivers,

¢ dual freq rec. generally give higher precision.




source: USGS, NAVCO, Garmin, own




How do we obtain data?

® Antennas and receivers/controller (2 kits min if no existing
network available)

® Costs: anything from between £5k and £30k per unit
® campaign-style surveys

® continuous observations




Continuous observations

® installation as reference
® running 24/7
® enables fix on location in 3-D (x, Y, 2)

® with high precision (mm precision both horizontal and vertical)




things to look out for:

safe location

monument stability
protection against elements
accessibility

good sky visibility

secure power supply

data storage/data transfer




How to obtain data

® options for different occupation modes
® most used for monitoring: static observations

® operate at least one reference and several rovers (can be
installed for any desired period of time)

® process baselines between rover and reference







Errors

Sources of User Equivalent Range Errors (UERE)

lonospheric effects £ 5 m
Ephemeris errors +2.5m
Satellite clock errors =2 m
Multipath distortion * | m
Tropospheric effects + 0.5 m
Numerical errors £ | m




Post-processing

® process data against a known reference (relative displacement
vectors)

® reference station may be your own with good fix on position

® alternatively use service such as SCOUT




Miyakejima eruption 2000

Source: Geography & Crustal Dynamics Research Center; http:/
cais.gsi.go.jp/Research/crust/crust_e.htm
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Ground deformation from GPS data:
Nisyros , Greece

1997-1998A
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Campi Flegrei 2006 uplift

A New Uplift Episode at Campi Flegrei Caldera (Southern taly)

October 2005
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Figure 6 Sketch of Campi Flegrei caldera with GPS points and inferred horizontal displace- W
ment vectors in the period May 2004—October 2006, with QUAR as reference, for the five sta- =
tions next to the deformed area. The 2-D error ellipses at 95% confidence level (factor=2447) Figure 7 Detail of vertical displacements from May 2004 to October 2006 as recorded from
are also shown. continuous GPS at station RITE (dots) and precision levelings at the benchmark in Pozzuoli
harbor (stars). The two benchmarks are very close (Figure 1). Errors on continuous GPS and
leveling data (10) are also shown.
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Gravimetry for volcano
monitoring

® Not standard tool
® time lapse micro-gravity surveys
® continuous gravimetric observation

® detection of changes in the acceleration due to Earth’s gravity




Classic setup




Field setup for gravity network

® Selection of reference outside area of interest
® installation of benchmark (BM)
® measurement of gravity difference between reference and BM

® |ocation and elevation measured by GNSS or theodolite




Example

reference

benchmark

measurement loops:
R>BMI >BM2 >BM3 > BM2 >R

R >BMI0O>BM9 >BM3BMI > BMIO
>R

Start and end loop at

= j.%:; reference!!!
& 08 2 : Why?

source: infoterra.de




Errors

® |nstrument drift (mechanical failure of spring)

® Tares (sudden jumps in reading due to mechanical readjustment:
permanent or retrievable)




Gravity reduction

Earth and Ocean tides

Drift

Free air correction: -0.3086 mGal/m (use elevation data from GNSS)
contribution from ground water table variations

deformation effects (source dependent)

NO: latitude, Bouguer or terrain corrections (needed for static gravity
surveys though)




® Scope: quantification of spatial and temporal evolution of
volcanic system

® residual gravity changes on order of few to hundreds of
microGal [10® to 10 m/s?]

0
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Time series

® Repeated periodic occupation of network (e.g., monthly, yearly,
every 2.5 years)

e Continuous observations ( eg., < |Hz)




Gravity time series example from Asama

volcano, Japan
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Examplel:
Long Valley Caldera

Battaglia et al., 2003: JVGR

® ground deformation and gravity data
1982-1999

® residual gravity change

® hybrid causative prolate source
(1100-2300 kg/md)
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Example Il: Central Volcanic Complex, Tenerife
S SR

(Gottsmann et al., 2006: GRL)

® ground deformation and gravity data
2004-2005

® gravity changes up tp 0.045 mGal but no
significant ground deformation

® aqueous fluid migration at shallow (ca.
2000 m below surface)
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The potential pitfall of time-lapse
observations

Time (month)
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The real period of such a signal (and thus any hypothesis about its source) remains ambiguous.
This ambiguity cannot be solved in the time domain (Nyquist limit).




Aliased data?
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Cgrav measurements

Deployment of continuously recording gravimeters in survey area

Gravity and surface deformation recorded jointly and simultaneously

Spring meters: L&R Aliod system, L&R ET meters, Scintrex CG-5,
Automated Burris Gravity Meter

Powerful method especially when linked with other geophysical
observations
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2005-2006 Etna eruption
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Multi-parameter perspective

® No single technique can provide all answers
® Need to think outside the box

® Need for multi-parameter analysis




Example: Nisyros caldera

Multiparameter experiment 2006:
| automated gravimeter, 2 field
gravimeters
| broadband seismometer, 3 GPS
receivers, | very low freq. electromagnetic
receiver
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Thermo-hydro-mechanical disturbances of the hydrothermal system may be important contributors to
periodic unrest.




Assessment of causative source(s) via data
modelling

Forward models: predict signal from known source
via trial and error to match recorded signal

Inverse models: use signal to obtain (invert for) the source characteristics




Analytical vs Numerical Modelling

o

Analytical

models are tractable
homogeneous linearly elastic medium
result can be misleading

Numerical

complex
heterogeneous medium
CPU and cost intensive




Data worth having:
-3-D vector field of surface displacement

-mass variations in both space and time
-static data
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Conclusions (1)

Volcano geodesy is an ever evolving field
New techniques

Increasing computational power
Remote techniques essential

Field work indispensable (ground truthing!!!)




Shareholders in volcano unrest (geodetic

signals)
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Conclusions (ll)

no single solution to address the
problem of how to best track mass/
density variations beneath volcanoes

each case needs dedicated analysis for
network design

integrated geodetic investigations are
a powerful component of volcano
monitoring

observed geodetic data need to be
considered within the general context
of the available volcanological and
geological observations

® integrated analysis and
multiparameter interpretation is
essential




Conclusions (lll)

Data essential for appraisal of volcanic phenomena
essential for forecasting

stochastic and non-linear processes?

probabilistic models

volcano memory?

Increasingly vulnerable population (500 mio people in vicinity of
active volcanoes)

fundamental input for hazard assessment and risk mitigation in
addition to geologic data




Current limitations and future opportunities

® Non-uniqueness of geodetic modelling ® Cross-correlation with other
techniques
® Data aliasing (indiv. obs. over years)
® Combine campaign, cont. and static
® Stability of reference measurements

® Fully integrated geodetic observations




Selected further reading

Volcano Deformation (general)

® GNSS Processing: http://www.usace.army.mil/publications/eng-manuals/em| | 10-1-1003/c-|.pdf to c-10.pdf
® Encyclopedia of Volcanoes (also for gravimetry)

® Volcano Deformation by Daniel Dzurisin (Springer)

® Earthquake and Volcano Deformation by Paul Segall (Princeton Univ. Press)

Volcano Gravimetry

® Gottsmann and Battaglia 2008, in: Caldera Volcanism, Developments in Volcanology 10, Elsevier

® Battaglia et al., Geophysics 73,2008

® Williams-Jones et al., Geophysics 73, 2008)

® General geodesy: http://landau.mines.edu/~samizdat (J. Wahr, Geodesy)




