Remote Sensing of Volcanic Gas Emissions

Simon Carn

Contributors: N.A. Krotkov, K. Yang, A.J. Prata, A.J. Krueger, W.I. Rose, G.J.S. Bluth, V.J. Realmuto, I.M. Watson

Overview

- Motivation for volcanic gas measurements
- Development of satellite remote sensing of SO₂
- Remote sensing theory (focus on SO₂ measurements)
- Survey of space-based SO₂ sensors
 - UV sensors: OMI, TOMS, GOME-2
 - IR sensors: MODIS, ASTER, TOVS, AIRS, IASI
- Application of Aura/OMI SO₂ data to volcano monitoring
 - SO₂ burden calculations
 - Burdens vs. emission rates
- Satellite sensor synergy: NASA's A-Train
- Web access to near-real time data
- Lab exercise: SO₂ emissions from Latin American volcanoes

Motivation for volcanic SO₂ measurements

- SO₂ is the most abundant gas in volcanic emissions that can be easily measured by remote sensing techniques
 - Low background concentrations (cf. H_2O , CO_2)
 - No other major sources above the planetary boundary layer (PBL)
 - Well-characterized spectral absorption bands (UV, IR, microwave)
- Released from magma at high temperature and low pressure
 - Signature of magmatic eruptions with potential for high altitude eruption columns
 - H₂S (hydrogen sulfide) is the more stable sulfur species at high pressures and low temperatures (e.g., fumarole fields)
- Environmental, health and climate impacts (sulfate aerosol)

Volcanic gas compositions

mol%	Nyiragongo (DR Congo) RIFT	Kilauea* (Hawaii) HOTSPOT	Merapi* (Indonesia) SUBDUCTION	Etna* (Sicily) SUBDUCTIO
H ₂ O	70	37	91	48
CO ₂	24	49	5	20
SO ₂	5	12	1	31
CO	1	2	0.1	0.4
HCI	0.3	0.08	0.6	-
HF	0.1	-	0.04	-

Trace constituents: CH₄, N₂, BrO, Zn, Cu, Hg, Au, As, Re, He, Ne, Ar....

*Symonds et al. [1994]

Temperature and pressure effects on volcanic gas species

Pre-eruptive volcanic degassing

Increase in SO₂ emissions prior to a major eruption

SO₂ flux and LP seismicity at Galeras (Colombia)

FIG. 2 SO₂ flux in metric tons per day (\bullet) and durations of recorded long-period (\geq 22 s) events (vertical bars) plotted against time, also showing the eruptions during the same time period. The SO₂ flux is measured using correlation spectrometer (COSPEC) methodology¹⁵. Uncertainty depends mostly on recorded wind speeds. The error at Galeras is assumed to be $\pm 20\%$, in general, and $\pm 40\%$, in the worst case. True SO₂ flux is likely to be higher than the calculated value. The three phases reflect changes in fluid dynamics along pathways through which gases flow, as interpreted from seismic and gas flux data.

[Fischer et al., Nature, 1994]

SO₂ emissions and RSAM at Fuego (Guatemala)

Create the Future

[Nadeau et al., GRL, 2011]

Aviation hazards from volcanic clouds

- Immediate hazards
 - Engine failure due to melted ash
 - Abrasion of windshield
- Secondary hazards
 - Corrosion by ash, sulfuric acid
- Mitigation
 - Immediate detection of fresh volcanic clouds SO₂ data valuable
 - Tracking/forecast of cloud position and altitude SO₂ valuable for cloud tracking

From: Volcanoes; Crucibles of Change, Princeton U. Press, Princeton, 1997.

Volcanic gas monitoring techniques

COSPEC

UV imaging

Electromagnetic spectrum – SO₂ absorption

UV and IR remote sensing

UV SO₂ and O₃ absorption spectra and instrument bands

IR-active trace gases and instrument channels

What about H₂S?

$SO_2 + 3H_2 =$ $H_2S + 2H_2O$

- May be a significant component of total S budget at some volcanoes
- Mid-UV absorption bands require active source
- IR absorption bands are very weak

A-Train observations: Kasatochi, August 9, 2008

GOSAT: Measuring CO₂ from space

- NASA Orbiting Carbon Observatory (OCO) failed at launch
- Japanese Greenhouse Gas Observing Satellite
 (GOSAT)
 - Launched January 2009; polar orbit with 1300 LECT
 - Fourier Transform Spectrometer (FTS) and Cloud-Aerosol Imager (CAI)
 - TANSO-FTS sensor measures CO_2 and CH_4 columns and profiles in SWIR/TIR
 - 0.2 cm⁻¹ spectral resolution, 10.5 km diameter FOV
 - 56,000 observation points over land; sunglint obs over oceans
 - Special observation 'stare' mode
 - ppm-level sensitivity to changes in CO₂ column column averaged dry air mole fraction) (uncalibrated data)
 - Evaluation of GOSAT data for volcanic CO₂ detection underway

30

[deg.]

380

370

360

60

390

120

[ppm]

150

180

UV Backscatter instrument - basic operation

Forward-model SO₂ retrieval (e.g., TOMS, OMI)

- Simulate at-satellite UV radiances as a function of viewing geometry, latitude, column O₃ and SO₂ amounts, surface pressure and reflecting surface conditions, using a radiative transfer model
- Compare measured normalized radiances with theoretical radiances calculated for the conditions of the measurement
- Derive column O₃ and SO₂ amounts in the scene by finding the values that give a computed radiance equal to the measured radiance
- Errors: highest in the presence of significant ash or sulfate aerosol, and at scan edges

Differential Optical Absorption Spectroscopy (DOAS)

Measured UV-visible spectra contain overlapping structures due to the solar spectrum (Fraunhofer lines), elastic scattering, trace gas absorption, aerosol absorption and the Ring effect (inelastic Raman scattering)

Absorption cross-sections of trace gases in the 200-700 nm wavelength range

Beer-Bouguer-Lambert (Beer's) Law

For a gaseous absorber, the absorption coefficient (β) is written as the product of an absorption cross-section (σ , cm²) and the number density of absorbers (N, molecules cm⁻³):

Beer's Law applies to direct beam only

• Deviations from Beer's Law occur at high concentrations

Motivation for space-based volcanic gas measurements

- During intense activity (safe)
- Cover remote and/or unmonitored volcanoes
- Ground-based or airborne instruments unavailable
- Cloud cover obscures plume from below
- Independent of wind direction
- Aircraft hazards (use SO₂ as a proxy for ash)

Carn et al., 2009

Detection of April 1982 El Chichon SO₂ cloud with the Total Ozone Mapping Spectrometer (TOMS)

[Krueger, Science, 1983]

Volcanic SO₂ clouds measured by TOMS

Volcanic SO₂ Emissions Inventory

Create the Future

Exploiting A-Train synergy for volcanic cloud studies Aura Aqua OMI - SO₂, O₃, NO₂, BrO MODIS - SO₂, ash, sulfate TES - SO₂ AIRS - UTLS SO₂, aerosols, SO₂ profile? MLS - strat. SO₂, HCl, O₃ CloudSat **CPR** – precipitation, hydrometeors **CALIPSO** CALIOP - cloud altitude, aerosol phase/type CALIPSO The A-Train Cloudsat PARASOL Glon 17.5 sec 1 min 2 min. 00 Aura 4 min 3 min.

Aura - Ozone Monitoring Instrument (OMI)

- UV/VIS sensor that succeeded TOMS
- Dutch/Finnish contribution to NASA's EOS/Aura mission (launched July 2004)
- Daily contiguous global coverage
- 13 x 24 km nadir footprint best ever for UV measurements from space
- Overpass at 1:30-2:00 pm local time
- Data publically available and free
- Row anomaly since August 2008 some data gaps
- The first space-borne sensor to provide daily, global SO₂
 measurements with sensitivity to the lower troposphere (i.e., passive degassing)

MetOp-A satellite

- Europe-US collaboration
- First in series of 3 MetOp satellites
- Launched 19 October 2006
- Polar, sun-synchronous orbit
- 9:30 am local time equator crossing
- 11 instruments

spots

- Sensors of volcanological interest:
 - Global Ozone Monitoring Experiment
 2 (GOME-2) SO₂, ash
 - Infrared Atmospheric Sounding Interferometer (IASI) – SO₂, ash
 - High-resolution Infrared Radiation
 Sounder-4 (HIRS/4) SO₂, ash
 - Advanced Very High Resolution
 Radiometer (AVHRR) ash, IR hot

Global Ozone Monitoring Experiment-2 (GOME-2)

- UV-visible wavelengths
- 1920 km swath width
- 80 x 40 km ground pixel size
- Data gaps at Equator
- 9:30 am local time equator crossing
- High SO₂ sensitivity
- Can detect small eruptions and strong degassing

Infrared Atmospheric Sounding Interferometer (IASI)

- 3.4 15 µm (infrared) wavelengths
- High spectral resolution, Fourier transform interferometer
- Mapping and vertical profiling of SO₂ possible
- 25 km horizontal resolution, 1 km vertical resolution
- Covers 3 SO₂ absorption bands in the IR
- Measurements at 9:30 am and 9:30 pm local time (IR)
- High consistivity to eruptions: decreasing may be detectable
 ULB-SA/CNRS IASI BTDSO2(K) Overview from 20080712 to 20080723

Up to 7 daily SO₂ measurements from UV/IR sensors

Satellites equatorial overpass solar local time

Satellite instruments - UV

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?
Total Ozone Mapping Spectrometer (TOMS)	Nimbus-7, Meteor-3, ADEOS, Earth Probe	Nov 78 – Dec 94 Jul 96 – Dec 2005	Yes
Global Ozone Monitoring Experiment (GOME)	European Remote Sensing Satellite (ERS-2)	July 95 – present	No
Scanning Imaging Absorption Spectrometer for Atmospheric Cartography (SCIAMACHY)	European Environmental Satellite (Envisat-1)	Sept 03 – present	No
Ozone Monitoring Instrument (OMI)	NASA EOS Aura	Sept 2004 – present	Yes (until late 2008)
Global Ozone Monitoring Experiment-2 (GOME-2)	MetOp A, B, C	Oct 2006 - present	No
Ozone Mapping and Profiler Suite (OMPS)	National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project	2011?	Yes

Operational SO₂ data products

Satellite instruments – Microwave & IR

Instrument	Satellite(s)	Data coverage dates	Daily global coverage?
Microwave Limb Sounder (MLS)	Upper Atmosphere Research Satellite (UARS), EOS Aura	1991 – 1994 (UARS) 2004 – (EOS Aura)	No
High Resolution Infrared Radiation Sounder (HIRS, HIRS/2)	TIROS-N, NOAA-6-14	Oct 78 – present	Yes (day/night)
Moderate Resolution Imaging Spectroradiometer (MODIS)	EOS Terra, Aqua	Feb 2000 –	Yes (day/night)
Advanced Spaceborne Thermal Emission & Reflection Radiometer (ASTER)	EOS Terra	Feb 2000 – (request only)	No
Atmospheric Infrared Sounder (AIRS)	EOS Aqua	Sept 2002 –	No
Spinning Enhanced Visible and Infrared Imager (SEVIRI)	Meteosat Second Generation (MSG)	2004 –	No
Infrared Atmospheric Sounding Interferometer (IASI)	MetOp A, B, C	Oct 2006 -	No

Satellite instrument footprints (nadir)

UV instrument SO₂ sensitivity

Instrument	Footprint area (km²)	Sensitivity (DU) 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ	
		Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km
EP TOMS	1521 (39×39)	3.5	7	3900	7800
GOME	12800 (40×320)	0.2	0.4	3600	7100
SCIAMACH Y	1800 (30×60)	0.2	0.4	125	251
GOME-2	3200 (40x80)	0.2	0.4	460	914
ОМІ	312 (13×24)	0.2	0.4	43	87
OMPS	2500 (50×50)	0.2	0.4	350	700

IR instrument SO₂ sensitivity

Instrument	Footprint area (km²)	Sensitivity (DU)* 1σ		Smallest cloud detection limit (tons) 5 pixels at 5σ	
		Stratosphere 20 km	Troposphere <5 km	Stratosphere 20 km	Troposphere <5 km
MODIS	1 (1×1)	9	250	6	174
ASTER	0.008 (0.09×0.09)	9	250	0.05	1.4
AIRS	143 (d = 13.5 km)	1	30	100	2986
SEVIRI	23 (4.8×4.8)	9	250	144	4009

*Based on *Realmuto* [1999], AGU Geophysical Monograph 116, p101-115 (except AIRS)

Units for SO₂ column amount measurements

1 Dobson Unit (DU) = 1 Milli Atm cm 1 DU = 0.01 mm thickness at STP e.g. 800 DU = 8 mm thick layer 1 DU = 10 ppmm at STP

• Satellites provide measurements of 'column amount' or 'total column' SO₂

- US units: Dobson Unit (DU)
- 1 DU = 2.69×10^{16} molecules cm⁻² = 0.0285 g m⁻² SO₂
- European units: molecules cm⁻²
- *Milli atm cm* also used (same as DU)
- Typical values in volcanic clouds
 - Fresh eruption cloud: 100s 1000+ DU
 - Non-eruptive degassing: <20 DU
 - Measured column amount depends on spatial resolution of sensor
 - Can be converted to mass or concentration (if cloud thickness is known)

Emission rate not directly measured

UV backscatter measurements

Image courtesy Matt Patrick (HVO)

UV radiation penetrates clouds

Fig. 7. CloudSat 2B-Tau cross section of cloud extinction (km⁻¹) along OMI orbit 12 402 (western track in tropical Pacific highlighted in Fig. 6); Averaged along-track over OMI pixel (~13 km); Pink triangles: OMI optical centroid cloud pressure; Purple diamonds: MODIS minimum cloudtop pressure within closest passive sensor footprint, orange-filled where MODIS maximum multi-layer flag >2.

(Joiner et al., ATMD, 2009)

• IR cloud top ≠ UV cloud pressure

CLOUD SLICING MEASUREMENTS OF OZONE INSIDE THICK CLOUDS

Fig. 4. Schematic diagram illustrating the ensemble cloud-slicing method. The figure shows that a satellite UV instrument is sensitive to the O₃ column from the top of the atmosphere down to the OCCP altitude which may lie several hundred hPa below geometrical cloud top. The lower half of the figure illustrates that using an ensemble of such measurements over a fixed region, mean volume mixing ratio can be determined from the slope of column O₃ plotted versus OCCP.

(Ziemke et al., ACP, 2009)

OMI data products – SO₂

Aura/OMI - 03/10/2010 18:44-18:50 UT - Orbit 30064 SO₂ mass: 5.46 kt; Area: 589606 km²; SO₂ max: 7.91 DU at lon: -84.49 lat: 10.55 ; 18:47UTC -90 -85 -80 -75 -65 2600 km 60 pixels ŝ AD . A. A across-track 16 day repeat 2 w anomaly cycle -80 -75 -70 -65 -60 -90 85 SO2 column 3 km [DU] -2.0 -1.6 -1.2 -0.8 -0.4 0.8 1.2 1.6 2.0 0.0 0.4

OMI data products – Aerosol Index

OMI data products – Cloud fraction

Detection of passive SO₂ degassing with OMI

3 year global average SO₂ from IASI (without large eruptions)

Global SO₂ emissions measured by OMI

OMI and ASTER: Nyiragongo (DR Congo), Jun 19, 2007

 Plume extent relative to size of satellite FOV constrains detection of degassing plumes from space

Effect of volcanic plume altitude on SO₂ retrievals

• Knowledge of SO₂ cloud altitude is critical for accurate SO₂ retrieval

• Satellite sensitivity increases with altitude in the troposphere

[Krotkov et al., IEEE TGRS, 2006; Yang et al., JGR, 2007]

Relative sensitivity of UV and IR measurements

Courtesy of L. Clarisse, ULB

Prata and Bernardo, 2007

• IR channels at ~4 μ m and ~8.6 μ m can detect lower tropospheric SO₂

Direct retrieval of SO₂ altitude from UV radiances

• Midlatitude O₃ profile, 325 DU, nadir, clear sky, SZA=45°

[Yang *et al.*, GRL, 2009]

Retrieval of large SO₂ columns in volcanic clouds

Daily OMI SO₂ measurements for Central America

http://so2.umbc.edu/omi

• Satellites measure column amounts of gases, NOT emission rates

Daily OMI SO₂ measurements for Kilauea

http://so2.umbc.edu/omi

-162 -164 -160 -158 -156 -154 -152

Construction of SO₂ mass time-series

OMI SO₂ data for Costa Rica

NASA/KNMI/NIVR/FMI

Contact: Simon Carn (scam@mtu.edu)

OMI SO₂ time-series for Costa Rica

Kilauea plume SO₂ burdens: 2004-2009

Kilauea plume SO₂ burdens: 2004-2009

Kilauea plume SO₂ burdens: 2008-2009

Reventador (Ecuador) seismicity and OMI SO₂ data

Create the Future

[Carn et al., JVGR, 2008] NSF PASI, San José, Costa Rica, Jan 2011

Soufrière Hills Volcano, Montserrat

[Carn and Prata, GRL, 2010]

Volcanic SO₂ flux measurements

Comparing OMI SO₂ burdens with SO₂ emission rates (Kilauea)

create the Future

SO₂ flux estimation from satellite data

- Satellite 'snapshots' measure SO₂ burden, not flux
- To first order, SO₂ emission rates can be inferred using the SO₂ burden and
- an estimate of the SO₂ lifetime
 - SO₂ lifetime short (hours) at low altitudes and in humid environments
 - May be a few hours in tropical boundary layers

$$Q = \frac{M}{\tau}$$

• Q = SO₂ emission rate (tons/day), M = SO₂ burden (tons), τ = SO₂ lifetime (days)

SO₂ flux estimation from satellite data

• Similar approach used to estimate smoke emissions from fires [*Ichoku and Kaufman*, 2005]

• Note that asymmetry of OMI pixel affects plume detection

SO₂ flux estimation from satellite data (Turrialba)

• Comparison between Turrialba SO₂ emission rates derived from ASTER, OMI and UV camera [*Campion et al.*, in prep.]

OMI sensitivity – passive degassing

	Minimum detectable SO ₂ flux (tons/day)			
Instrument	Plume velocity 1 m/s	Plume velocity 5 m/s	Plume velocity 10 m/s	
Earth Probe TOMS $(1\sigma = 3.5 \text{ DU})$	1030	5140	10290	
OMI (plume traverses 13 km pixel width)	36	180	360	
OMI (plume traverses 24 km pixel length)	19	95	190	
COSPEC	10	52	104	
Typical volcano	100 - 5000			

Detection limit (3σ above background) of passive SO₂ flux from a 5000m volcano at various plume velocities; $1\sigma = 0.2$ DU assumed for OMI

OMI SO₂ websites

http://so2.umbc.edu/omi_home_new2.html/

OMI SO₂ websites - NRT

National Environmental Satellite, Data, and Information Service (NESDIS)

>>GOME SO2 Data

Latest OMI SO2 Column 5Km - 24-Hour Composite Images

Current OHI SO2 Composites	Tropics	Northern Hemisphere	Southern Hemisphere
Current & Previous Digital Images GeoTiff, NetCDF, McIDAS, GIF	Tropics	Northern Hemisphere	Southern Hemisphere

Latest OMI_SO2 Column 5Km by Volcano

Alaska, USA	Aleutian Islands, Alaska, USA	Anatahan, Hariana Islands	Cascade
Central America	Comoro Islands	Eastern China	Ecuador
Etna, Sicily, Italy	Galapagos Islands, Ecuador	Hawali, USA	Iceland
Japan	Java, Indonesia	Kamchatka, Russia	Mexico
Montserrat, West Indies	New Zealand	North Western Europe	Northern Atlantic
Northern Chile	Nyiragongo, DR Congo	Peru	Philopines
Papua New Guinea	Red Sea	Reunion Island	Southern Chile
Sulawesi Sangihe, Indonesia	Sumatra, Indonesia	Tanzania	Vanuatu, South Pacific

DESCLAIM: This page is experimental and for testing purpose only

For AIRS 502 products check the AIRS 502 Alert Site

Near real-time: http://satepsanone.nesdis.noaa.gov/pub/OMI/OMISO2/index.html

Operational OMI SO₂ data from NASA Mirador

http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omso2_v003.shtml

Near real-time OMI SO₂ data from NASA LANCE

http://lance.nasa.gov/data-producers/omi-sips/omi-sips-products/ (Registration required)

BIRA website

SCIAMACHY

OMI

GOME-2

http://sacs.aeronomie.be/nrt/

DLR GOME-2 website

German Aerospace Center

GOME-2 Near-Real-Time Service

GOME-2 level 3 products on SO2 are generated at DLR in near-real-time in the framework of the projects ESA/PROMOTE, EUMETSAT/AGORA and BMBF/EXUPERY.

GOME-2 NRT Products (level 3)

Archive: Images (GIF, PS)

SO2 Navigation Tool

http://wdc.dlr.de/data_products/SERVICES/GOME2NRT/so2.php

AIRS NRT SO₂ website

Date.Granule	Image 1	Image 2	AIRS L1B (to get hdf data, email us)
2007.11.24.118			AIRS.2007.11.24.118.L1B.AIRS_Rad.v4.0.9.0.N07328092701.hdf
2007.11.24.007			AIRS.2007.11.24.007.L1B.AIRS_Rad.v4.0.9.0.N07327220006.hdf
2007.10.15.163	2	2	AIRS.2007.10.15.163.L1B.AIRS_Rad.v4.0.9.0.N07288144427.hdf
2007.10.15.147			AIRS.2007.10.15.147.L1B.AIRS_Rad.v4.0.9.0.N07288130040.hdf
2007.10.04.217			AIRS.2007.10.04.217.L1B.AIRS_Rad.v4.0.9.0.N07277195643.hdf
2007.10.04.096			AIRS.2007.10.04.096.L1B.AIRS_Rad.v4.0.9.0.N07277063327.hdf
2007.10.04.080			AIRS.2007.10.04.080 L1B.AIRS_Rad.v4.0.9.0.N07277062356.hdf
2007.10.03.226			AIRS.2007.10.03.226 L1B.AIRS_Rad.v4.0.9.0.N07276203956.hdf
2007.10.03.105			AIRS.2007.10.03.105.L1B.AIRS_Rad.v4.0.9.0.N07276072757.hdf
2007.10.03.089			AIRS.2007.10.03.089.L1B.AIRS_Rad.v4.0.9.0.N07276071649.hdf
2007.10.02.236			AIRS.2007.10.02.236.L1B.AIRS_Rad.v4.0.9.0.N07275214657.hdf
2007.10.02.235			AIRS.2007.10.02.235.L1B.AIRS_Rad.v4.0.9.0.N07275214658.hdf

http://www.star.nesdis.noaa.gov/smcd/spb/iosspdt/iosspdt.php?so2=1#1

IASI NRT SO₂ alerts

http://cpm-ws4.ulb.ac.be/Alerts/index.php

MODIS Rapid Response website

CALIPSO website

http://www-calipso.larc.nasa.gov/products/lidar/browse_images/show_calendar.php

The fate of sulfur gases in the atmosphere

- SO_2 (S⁺⁴) oxidizes to sulfuric acid (sulfate) aerosol (H₂SO₄)
 - Rapid in aqueous phase (hours) clouds, fog
 - Slower in gas phase (days-weeks) stratosphere
 - Sulfuric acid (S⁺⁶) highly soluble in water rapid removal in precipitation
 - SO_2 also scrubbed by H_2O before emission
- H_2S (S⁻²) oxidizes to SO₂ (and sulfate) by reaction with OH,

ozone (O_3)

- Less water-soluble than SO₂ (lower oxidation state)
- Less susceptible to scrubbing
- Not easily detected using remote sensing techniques

Diurnal evolution of planetary boundary layer

OMI @ 1:30-1:45 pm

Michigan Tech Create the Future

Aura/OMI - Aura/MLS: Anatahan (CNMI), April 7, 2005

Aura/OMI – Aura/MLS: Manam (PNG), Jan 2005

Aura/OMI - Aqua/AIRS: Sierra Negra (Galapagos) 2005

• Sierra Negra (Galapagos) eruption, October 24, 2005

• OMI-AIRS synergy indicates SO₂ concentrated in the lower troposphere

Aura/OMI - CALIPSO lidar: Soufriere Hills, May 2006

OMI - Aqua/AIRS - CALIPSO: Chaitén (Chile), May 2008

Kilauea degassing – April 7, 2008

Aura/OMI - Aqua/MODIS - Anatahan (CNMI), Feb 10, 2008

OMI, TOMS and AIRS: Manam (PNG), Jan 28, 2005

Strengths and weaknesses of SO₂ data

- Strengths
 - Unique marker of magmatic volcanic eruptions
 - Virtually no interference from other sources in most volcanic regions (apart from other volcanoes...)
 - Current UV/IR satellite sensors sensitive to low SO₂ amounts
 - UV sensors can detect SO₂ degassing prior to eruptions
 - Can map volcanic clouds when ash is encased in ice
 - UV sensors can detect SO₂ in opaque volcanic clouds
 - SO₂ measurements have been validated (but more is needed)
 - Could SO₂ be used to assess cumulative aircraft exposure to volcanic clouds?

Weaknesses

- Poor proxy for dense ash when SO₂ and ash clouds separate
- No geostationary SO₂ data in NOPAC region (yet -> GOES-R ABI)
- UV techniques restricted during winter months

Summary

- Numerous satellite sensors now provide SO₂ measurements
- Some have standard SO₂ products, others require application of retrieval algorithms to yield quantitative SO₂ data
- Aura/OMI is an economical and effective tool for monitoring volcanic SO₂ degassing on a regional or local (single volcano) scale
- OMI's high SO₂ sensitivity and global coverage allows detection of nearly all significant volcanic eruption clouds, assisting aviation hazard mitigation and improving our understanding of the atmospheric impacts of volcanism
- Detection of tropospheric SO₂ plumes by OMI depends on several factors, hence the lower detection limit in terms of SO₂ flux is variable (with latitude, vent altitude etc.)
- Altitude sensitivity must be considered when evaluation satellite SO₂ data
- New satellite constellations (A-Train) provide opportunities for sensor synergy and '3D' analysis of volcanic clouds

Eruption detection: Fourpeaked (AK)

Create the Future

20,000 ft

Fourpeaked (AK) – Sept 2006

Small magmatic intrusion at shallow depth?

Garbuna (PNG) – October 2005

Aura/OMI - 10/17/2005 03:35-03:36 UT - Orbit 06682

SO₂ mass: 0.112 kt; Area: 2692 km²; SO₂ max: 2.11 DU at lon: 149.91 lat: -5.41

• As of June 2007, seismic activity continued and a boiling lake occupied the crater

Detection of ice-rich volcanic clouds

Validation of trajectory/dispersion models

http://eer.cmc.ec.gc.ca/people/Alain/eer/exercises/okmok/exp_05/sig2v_0.5/FL350-FL600/anim.html

MLDP0 data courtesy of René Servranckx and Alain Malo, Montreal VAAC

- Accurate dispersion models are essential for volcanic ash forecasting
- SO₂ better suited for model validation due to its much longer atmospheric residence time

Aviation encounters with dilute volcanic clouds

• Encounters over Micronesia, Nov 2002 and March 2003 [Tupper et al., 2006]

- 'Gulfstream incident': twin-engined flameout over PNG, July 2006 [Tupper et al., 2007]
- NASA DC8 encounter with Hekla volcanic cloud, Feb 2000

Kilauea plume (April 1, 2008) – Aqua MODIS (1400 LT)

Kilauea plume (April 1, 2008) – Aura OMI SO₂ (1410 LT)

Kilauea plume (April 1, 2008) – Aqua MODIS (1400 LT)

Kilauea plume (April 1, 2008) – Aqua MODIS (1400 LT)

OMI annual average SO₂ in 2005: W. Pacific/S.E. Asia

OMI annual average SO₂ in 2006: W. Pacific/S.E. Asia

