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ABSTRACT

Satellite SO, and ash measurements of Mount Spurr’s three 1992 volcanic clouds are compared with ground-based
observations to develop an understanding of the physical and chemical evolution of volcanic clouds. Each of the three
eruptions with ratings of volcanic explosivity index three reached the lower stratosphere (14 km asl), but the clouds
were mainly dispersed at the tropopause by moderate to strong (20-40 m/s) tropospheric winds. Three stages of cloud
evolution were identified. First, heavy fallout of large (>500 um) pyroclasts occurred close to the volcano (<25 km
from the vent) during and immediately after the eruptions, and the cloud resembled an advected gravity current.
Second, a much larger, highly elongated region marked by a secondary-mass maximum occurred 150-350 km down-
wind in at least two of the three events. This was the result of aggregate fallout of a bimodal size distribution including
fine (<25 pm) ash that quickly depleted the solid fraction of the volcanic cloud. For the first several hundred kilometers,
the cloud spread laterally, first as an intrusive gravity current and then by wind shear and diffusion as downwind
cloud transport occurred at the windspeed (during the first 18-24 h). Finally, the clouds continued to move through
the upper troposphere but began decreasing in areal extent, eventually disappearing as ash and SO, were removed by
meteorological processes. Total SO, in each eruption cloud increased by the second day of atmospheric residence,
possibly because of oxidation of coerupted H,S or possibly because of the effects of sequestration by ice followed by
subsequent SO, release during fallout and desiccation of ashy hydrometeors. SO, and volcanic ash travelled together
in all the Spurr volcanic clouds. The initial (18-24 h) area expansion of the clouds and the subsequent several days
of drifting were successfully mapped by both SO, (ultraviolet) and ash (infrared) satellite imagery.

Introduction

The 1992 eruptions of the Crater Peak vent of clouds. Because of proximity to Anchorage and
Mount Spurr, Alaska (hereafter called “Spurr erup-  availability of the resources of the Alaska Volcano
tions”), provided an opportunity to apply satellite =~ Observatory (a consortium of USGS, State of
measurement techniques to study the atmospheric ~ Alaska, University of Alaska Fairbanks) and the
residence of and fallout from volcanic eruption  National Weather Service (National Oceanic and

Atmospheric Administration), unusually complete

Manuscript received January 23, 2001, accepted April 12, ~ basic observations existed. Here we integrate data

2001. on the eruptions from meteorological radar (Rose
' U.S. Geological Survey, Alaska Volcano Observatory, An- et al. 1995b), total ozone mapping spectrometer
chorage, Alaska, U.S.A. (TOMS) satellite observations (Bluth et al. 1995),

% Centre for Environmental and Geophysical Flows, Depart- . . .
ment of Earth Sciences, University of Bristol, Bristol BSS 1R], advanced very high resolution radiometer (AVHRR)

United Kingdom. weather satellite data (Schneider et al. 1995; Shan-
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Table 1. Characteristics and Environmental Conditions for the Crater Peak Eruptions of Mount Spurr, 1992
June 27 August 19 September 17 Source

Start time (GMT) 1504 0042 2003 1
Eruption peak (GMT) 1823 0055 2221 2
End time (GMT) 1907 0410 2339 1
Duration (min) 243 208 216 1
Mean column height (km asl) 11.1 11.8 12.0 3
Maximum column height (km asl) 14.5 13.7 13.9 2
Mean eruption rate (m?*/s) 820 1120 1160 3,4,6
Maximum eruption rate (m?/s) 3230 2330 2500 2, 4
Clast density (kg/m?) 1760 1500-1550 1530-1580 3
Windspeed (m/s):

0-3 km asl 5.8 6.5 5.2 5

3-6 km asl 16.2 12.3 15.1 5

6-9 km asl 18.6 18.6 29.3 5

9-12 km asl 21.3 24.9 36.4 5

12-15 km asl 13.9 10.9 32.3 5
Average wind direction:

0-3 km 169 205 153 5

3-6 km 190 290 239 5

6-9 km 200 315 274 5

9-12 km 202 308 272 5

12-15 km 201 275 276 5
Tropopause height (km asl) 11.7 10.7 12.2 5
Temperature (°C):

0 km asl 10.2 15.2 4.3 5

3 km asl -2.8 —-7.2 -7.0 5

6 km asl -19 -23 -16 5

9 km asl —41.7 —47 -39.9 5

12 km asl -57.3 —62.3 —62 5
Dew point (°C):

0 km 9.3 8.0 -9.4 5

3 km -3.8 -8.3 —-18 5

6 km -23 —-34 -17 5
Fall volume (DRE [x 10° m?) 12 14 15 3
Sources. 1, McNutt et al. 1995, p. 165; 2, Rose et al. 1995b, p. 21; 3, Neal et al. 1995, p. 68; 4, Sparks et al. 1997, p. 118; 5,

National Oceanic and Atmospheric Association rawindsonde information from Anchorage, Alaska; 6, Gardner et al. 1998.

non 1996), ash sampling (Neal et al. 1995; Gardner
et al. 1998; McGimsey et al. 2001), and a wide va-
riety of other geophysical observations (Keith
1995). The goal of this article is to gain better un-
derstanding of volcanic clouds that enter the
stratosphere.

Spurr Eruptions in 1992

The three 1992 Spurr eruptions were subplinian,
andesitic, and explosive events that resulted in sig-
nificant fall deposits and limited pyroclastic ava-
lanches and lahars. Table 1 lists characteristics of
these events. They are similar in intensity, dura-

tion, magma composition, and volume; however,
meteorological conditions differed. Each eruption
penetrated the stratosphere at least at the peak of
the eruption. Each of the eruptions was recorded
by a network of seismic stations (Power et al. 1995)
and was observed by C-band radar at Kenai (80 km
SE of Crater Peak; Rose et al. 1995b). The volcano
is located near a regular rawindsonde measurement
point (Ted Stevens Anchorage International Air-
port, 125 km ESE), and the fall deposit from each
event was mapped and sampled (Neal et al. 1995;
McGimsey et al. 2001). The Spurr events are typical
of worldwide Volcanic Explosivity Index (VEI) =
3 events that occur on the average once per year,

Table 2. Satellite Remote-Sensing Tools Used in Study of Volcanic Clouds

TOMS AVHRR GOES
Wavelengths 312-380 nm 10-12.5 pm 10-12.5 pm
Orbit Polar Polar Geostationary
Sensing target SO, (+ash) Silicate ash Silicate ash
Archive 1978- 1981- 1996-
Scenes per day 1 4-8 48
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Table 3. Retrieval Data from Volcanic Cloud Sensors, 1999

Sensor Retrieval data Resolution (at nadir) Reference

TOMS 2D position, SO, mass 50 km Krueger et al. 1995
TOMS Al 2D position, OD (UV) 50 km Krotkov et al. 1999
AVHRR and GOES 2D position, OD (IR} ~4 km Wen and Rose 1994
Note. References give details on the retrieval algorithms. OD (optical depth) is a unitless index of the attenuation of radiation as

it passes through the atmosphere due to the presence of suspended particles. OD and turbidity are essentially synonymous quantities,
both being logarithmic indices of atmospheric optical attenuation to a vertical beam. OD is highly dependent on wavelength and

varies from <0.1 (clean atmosphere) to 4 (essentially opaque).
2 Particle effective radius, mass in 1-15-pm range.

which represent the most common type of volcano/
stratosphere interactions, even though some
VEI = 3 events (especially between 30°N and 30°S
latitude) do not actually reach the stratosphere and
many have only marginal stratospheric interaction.

Satellite-Sensing Data

Direct sampling of volcanic clouds by any means
remains a difficult task given their well-known
hazards (Casadevall 1994). Because of this, study of
volcanic clouds has mainly been through remote
sensing, using ground-based and satellite sensors.
Remote-sensing methods use radar, microwave, in-
frared (IR), and ultraviolet (UV) multispectral meth-
ods that can detect, map, and retrieve spatial in-
formation about volcanic clouds. Table 2 lists the
main satellite-based techniques used in this study.
We also used ground-based C-band radar data that
detected the volcanic clouds in their very early
stages (until about 30 min after eruption), while
they still contained coarse particles (2-20 mm) and
mass concentrations ranging from <.01 to 1 g/m?
that produce strong radar reflections (Rose et al.
1995b).

Each of the three Spurr eruptions was observed
and measured for several days by both the TOMS

and AVHRR satellite detectors, and information
about the clouds was retrieved from remote-sensing
algorithms (table 3). In this study, we consider and
compare basic information about these satellite-
based measurements for the three Spurr events
(AVHRR data is in tables 4-6; TOMS data from
Bluth et al. 1995).

Sequential TOMS and AVHRR data allow us to
examine the dynamics of the Spurr volcanic clouds.
Figure 1 shows how the two-dimensional area from
the satellite perspective changed for the three
events. Both TOMS and AVHRR detected volcanic
clouds of similar size and followed similar tracks.
Separation of the SO, and ash in the cloud, as noted
in other eruptions (e.g., Schneider et al. 1999), did
not occur in any of the Spurr eruptions. In all three
cases, the area of the clouds increased rapidly at
first, and after about 1-2 d, the June and August
clouds began to decrease in size. Study of the tra-
jectory of air parcels in conjunction with the sat-
ellite data for the June eruption for the first several
days after eruption (Shannon 1996) showed that
areal growth of the cloud during its first few days
was partly due to wind shear, while area decreases
that occur after several days are largely the result
of loss of the lower-elevation portions of the vol-
canic clouds.

Table 4. AVHRR Two-Band Brightness Temperature Difference Retrieval Data from the June 1992 Spurr Eruption

Residence Effective radius Optical Ash mass Area Ash burden
(h) (wm) depth (kT) (km?) (t/km?)
4.3 8.3 1.9 317 15,000 20.80
12.5 8.2 .86 438 47,000 9.24
23 6 .19 258 167,000 1.55
26.3 6 13 194 140,000 1.38
31.3 5 .16 166 120,000 1.38
36.3 6 .03 214 173,000 1.24
107 6.5 .16 183 134,000 1.37
118 5.7 .07 122, 205,000 .60
128 6.8 1 128 137,000 .93
142 6.5 1 102 114,000 .90
146.3 6.6 .09 94 121,000 .78
152 6 1 110 134,000 .82
Source. Shannon 1996.

Note.

Residence refers to the time passed following the onset of the eruption in hours. Effective radius is given in pum = 1 x

107¢ m. Optical depth is a unitless measure of optical thickness. Ash mass is in kT = 1 x 10° g; ash burden is in metric tons km?>.
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Figure 1. Two-dimensional areas for Spurr clouds and

infrared (10.8 um) optical depths for volcanic clouds from
the three Spurr eruptions for the first several days after
eruption. Areas shown are based on both TOMS (SO,
detection) and AVHRR (fine-ash detection) satellite data.
Data from tables 4-6.

Estimates of the masses of SO, and fine (diam-
eters 1-25 um) silicate particles in the Spurr vol-
canic clouds are shown in figure 2. SO, masses are
higher in the second day of measurement for all
three of the Spurr events. This difference cannot be
explained by the continuing emission of SO, be-
cause the first day’s measurement occurred after
the end of the eruption (with the exception of the
June eruption by about 30 min). It is unlikely to
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reflect an error in TOMS data analysis (Krueger et
al. 1995) that would be far less than the observed
difference. It is unlikely that the TOMS detector
was saturated or suppressed by an interference from
volcanic ash in the SO, signal because simulations
of this effect would likely result in an overestimate
the first day rather than an underestimate (Krueger
et al. 1995). The favored explanation is that the
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Figure 2. Masses of SO, and fine ash (1-25 um diameter)

in Spurr volcanic clouds. Data from tables 4-6.
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Data from tables 4-6.
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mass increase is due to coemission and subsequent
oxidation of H,S (Rose et al. 2000), but we are also
investigating the possibility of temporary seques-
tration of SO, by ice during the first day followed
by subsequent release during the fallout and des-
iccation of ashy hydrometeors (see “Discussion”).

The maximum fine-ash masses detected in the
Spurr volcanic clouds represent about 2% of the
estimated total mass erupted in each eruption (ta-
ble 7), a fraction that is up to two orders of mag-
nitude higher than was found for several larger
eruptions. We interpret this difference as reflecting
the greater efficiency of ash removal for more in-
tense eruptions as a result of higher rates of particle
reentrainment into the eruption column and more
efficient removal by aggregation as predicted by
Ernst et al. (1996). By analogy with the work of
Pinto et al. (1989) on sulfate aerosol, one comple-
mentary explanation may be that ash aggregation
processes are also enhanced when there are higher-
mass fluxes/concentrations of particles in the ash
cloud. The fine-ash masses (fig. 2) decline at a more
rapid rate during the first day of residence and at a
slower rate nearly parallel to the SO,

A measure of the area-averaged “burden” of the
volcanic clouds can be estimated by dividing
masses by areas in tables 4-6 (fig. 3). The ash bur-
dens for all three eruptions decline very rapidly in
the first day, and quite slowly thereafter, while SO,
burdens show slow declines after the second day.
The ash-burden estimates correlate well with op-
tical depths (fig. 4) as would be expected.

Effective radius is a ratio of volume to area (re-
lated to particle size) that is retrieved for particles
from IR remote sensing (table 5). These data show
that the June volcanic cloud had higher effective-
radius values (fig. 5). We are unsure of the detailed
meaning of these results. Higher effective-radius
values for the June case could reflect the greater
influence of ice (see Rose et al. 2000 for more dis-
cussion of the role of ice and Doukas and Gerlach
1995 for description of wetter conditions in June).

Table 5. AVHRR Two-Band Brightness Temperature Difference Retrieval Data from the August 1992 Spurr Eruption

Residence Effective radius Optical Ash mass Area Ash burden
(h) (um) depth (kT) (km?) (t/km?)
13.6 4.44 44 331 128,000 2.59
17.3 3.44 29 241 171,000 1.41
18.9 3.61 37 373 199,000 1.87
23.1 4.41 27 371 230,000 1.61
37.4 2.21 11 197 455,000 43
47.3 1.65 .07 141 403,000 .35
83.4 2.61 .05 70 276,000 25
Source. Schneider et al. 1995.
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Except for the higher June values, the effective ra-
dius for all three Spurr events otherwise displays a
qualitatively similar evolution with time consist-
ing of decreasing size. This decrease was also ob-
served in data from El Chichén voleano (Schneider
et al. 1999, fig. 4, p. 4048). There are apparent min-
ima in all three curves at ~36, ~50, and ~24 h, but
we hesitate to interpret much from these at this
point because effective-radius retrieval is imprecise
and is known to be affected by atmospheric water
vapor (Yu et al. 2002).

Stages of Volcanic Cloud Evolution

The Spurr clouds seem to have three stages of evo-
lution (table 8). First, during the eruption and for
1-2 h following, they grow rapidly in area and are
essentially optically opaque to the IR sensor. At
this stage, they resemble thunderstorms and typi-
cally exhibit very cold temperatures to the IR sen-
sors. The core of these clouds is opaque in the IR
(optical depth ~4), and we cannot retrieve size and
mass information (fig. 6). During the first 30 min
after the eruption stops, the C-band radar signal
(proportional to the sixth power of the particle ra-
dius) falls rapidly as all coarse ash and lapilli-sized
ejecta fall out from the ash cloud at high Re (Bon-
adonna et al. 1998), accounting for much (>70%) of
the total volume of fall materials. This material
falls out (deposit mass/area = 10,000-250,000
g/m?) in the proximal ash blanket covering an area
of about 300 km? (approximately the area outlined
by the isomass lines surrounding Mount Spurr in
fig. 7).

In the second stage of volcanic cloud evolution
that lasts no more than about one day, the cloud
continues to grow aerially, increasing its area by a
factor of two to five (fig. 1), but its optical depth
and fine-particle concentration decreases very rap-
idly by an order of magnitude or more. This period
correlates with the time of premature fallout of ag-
gregated fine ash in a settling regime characterized
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Figure 4. Plots of linear covariations between optical

depth and ash burden. Data from tables 4-6.

by particle Re number transitional between lami-
nar and turbulent (Riley et al. 1999) and the for-
mation of a secondary-fallout maximum that is
well defined for both the August and September
Spurr events (fig. 7; McGimsey et al. 2001). The
deposit mass/area of fallout (100-2500 g/m?) is
much less and the area of fallout (~5 x 10* km?)
much greater for this secondary-fallout maximum
compared to the primary-fallout maximum that is
located adjacent to the volcano. The rapid reduc-
tion of mass of fine particles in the cloud during
this period (fig. 2) likely reflects an aggregation pro-
cess because the terminal velocities of fine (<20 um)
particles are far too slow for them to fall from tro-
popause heights in only one day unless they are
part of much larger aggregates. The mapped fallout
of the August and September Spurr events all lie
under regions that the volcanic clouds passed over
within the first 15 h after the eruption. Also, during
this second stage, the SO, masses in these clouds
increase, possibly reflecting the rapid conversion of
H,S to SO, (Bluth et al. 1997).

A third stage in volcanic cloud evolution lasts
for several (3-5) days, during which the cloud
moves thousands of kilometers, its ash concentra-

Table 6. AVHRR Two-Band Brightness Temperature Difference Retrieval Data from the September 1992 Spurr

Eruption

Residence Effective radius Optical Ash mass Area Ash burden
(h) (wm) depth (kT) (km?) (t/km?)
3.7 2.99 1.27 240 34,000 7.13
8 4.43 .89 423 79,000 5.39
13.7 5.07 71 412 87,000 4.71
26 3.23 21 254 232,000 1.09
35.7 3.88 3 224 131,000 1.71
49 3.89 22 262 216,000 1.22
57.9 3.23 15 153 200,000 .76
70 2.2 .08 118 307,000 .38
Source.  Schneider et al. 1995.



Journal of Geology

tions and optical depths decrease very slowly, and
the masses of both SO, and fine particles decrease
steadily. During this stage, fallout is very light and
at low Re (Bonadonna et al. 1998), and the mass of
remaining fine silicate particles is only at most a
few percent of the total erupted volume. Finally,
after several days, both the IR and UV detection of
the cloud become difficult because the concentra-
tions of SO, and ash fall below the level of noise.
Except for the June volcanic cloud that traversed
very cold Arctic regions that limited the sensitivity
of the IR detector from about 20-120 h after the
eruption, the positions, shapes, and sizes of the SO,
and silicate-ash volcanic clouds were very similar
throughout. This suggests that the SO, and ash
moved as part of the same air parcels.

Factors Controlling Cloud-Shape Evolution. For
the August 18, 1992, Spurr event, we use a pho-
tograph of the volcanic cloud from a fixed-wing air-
plane (fig. 7 in Neal et al. 1995) and three satellite
images from band 4 data (at 0126, 0331, and 0512
GMT [fig. 6]) to analyze volcanic cloud dispersal
during stage 1 and the first part of stage 2 when
aircraft ash-related hazards are highest. In stage 1,
figure 8ashows data for the cloud front (distance to
the upwind leading edge) as a function of time.
There is a short initial period, <15 min in duration,
when downwind spreading is enhanced by radial
gravity flow. After this, the data are consistent with
downwind spreading by simple advection by upper-
tropospheric winds of ca. 20 m/s. This is consistent
with wind data of ~6-12 km asl (table 1).

Figure 8c shows data for the maximum volcanic
cloud width against downwind distance measured
as in figure 8a. We compare the data with the the-
oretical prediction assuming that lateral spreading
is controlled by intrusive gravity current flow,
while the cloud is being advected downwind (Bur-
sik et al. 1992; Sparks et al. 1997). The theory ne-
glects wind shear as a first approximation. It further
assumes a volcanic cloud steadily supplied from
below by the eruption column, with no entrain-
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ment into the cloud and negligible lateral spreading
due to diffusion from atmospheric turbulence. The
theoretical expectation that also compared well
with data for the May 18, 1980, Mount St. Helens
cloud (see fig. 8b, 8d) is that maximum cloud width
(y[max]) scales as the square root of distance to the
cloud front (x):

y(max) = U 'V2ANQx, (1)

where U is the windspeed at the cloud height (in
m/s), N is a parameter (~1) that depends on flow
geometry, N is the Brunt-Vaisild frequency of the
atmosphere (~0.035s — 1; a measure of its density
stratification), and Q is the volumetric flux of ma-
terial, assumed constant, in the steady advected
volcanic cloud and related to column height (Ht)
using Q = ([Ht in km]/0.287)>%. Thus, the expec-
tation is of a near-parabolic, cloud-shape profile
that is in agreement with Mount St. Helens data
as well as with Spurr data from the upwind edge
to the location where maximum lateral spreading
is observed.

The assumption of constant flux at the vent is
only robust to a first order, so we conclude that the
agreement between theory and data is satisfactory

Table 7. Fine-Ash Masses Measured in Volcanic Clouds by Satellite

Volcano Date Total mass erupted?® Maximum fine ash detected® Percentage
Spurr 6/92 21.1° 44 2.1
Spurr 8/92 21.3° 42 2.0
Spurr 9/92. 23.3° .61 2.6

El Chicho6n 4/82 910° 6.5¢ 7
Lascar 4/93 34514 4.8¢ 1.4
Hudson 8/91 7600f 2.98 .04
Source. Rose et al. 2000.

Note.

Effective radius = 1-12 um. Letters in superscript in table body refer to the following sources: "Neal et al. 1995; “Schneider

et al. 1999; ‘Viramonte et al. 1995; “H. Shocker, W. I. Rose, G. J. S. Bluth, A. J. Prata, and J. Viramonte, unpub. data; ‘Scasso et al.

1994, sConstantine et al. 2000.
2 Reported in metric tons (1 x 10° g).
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Table 8. Stages Defined in Volcanic Cloud History based on Spurr Volcanic Clouds

1 2 3
Duration (h after eruption stops) ~1-2 18-24 24-96+
Fallout (km from volcano) <25 25-400 >400
Area of fallout (km?) <300 ~5 x 104 ?, discontinuous
Fallout diameter range (mm) >.5 .5-<.01 <.01
Fallout rate (kT/h) >10* <10*-10? “very” low
Fraction of fine ash ([diameter 1-25 pm]|%) <1 10-50 >50
Cloud area (km?) <10* 10*-10° 10¢, decreasing
Cloud area change (% /h) >100 30-50 —10 to +10
Mean optical depth (11 um) >2 5-2 <3
Cloud ash burden (T/km?) >25 3-10 <3
Fraction of ash mass suspended (%) 100—~30 ~30-3 <3

(see fig. 8¢). In particular, accounting for diffusion
by atmospheric turbulence is not essential for an-
ticipating maximum cloud spreading because it
would not significantly improve the comparison.
In summary, data for stage 1 and early stage 2 cloud
maximum spreading are consistent with an ad-
vected gravity current that is unaffected by diffu-
sion or wind shear. Diffusion and wind shear may
however exert at least a partial control on the
cloud-shape profile beyond the location of maxi-
mum spreading. When these two effects are un-
important, the expectation is that maximum cloud
spreading is observed near the leading downwind
edge of the cloud (May 18, 1980, Mount St. Helens
case; Bursik et al. 1992); however, where wind
shear/diffusion are important, maximum spreading
is expected to occur at a considerable distance far-
ther upwind than the leading edge (August Spurr
case).

The spreading behavior of the August Spurr cloud
shares many similarities with the May 18, 1980,
Mount St. Helens cloud that also interacted mostly
with upper-tropospheric winds (30 m/s in the
Mount St. Helens case; fig. 8D, 8d, 8f). The figures
together constrain key aspects of the geometry of
a spreading cloud: upwind leading edge, maximum
volcanic cloud lateral extent, and distance from the
vent to the cloud front.

During the first part of stage 2, most of the cloud
is still growing as a gravity current. During the rest
of stage 2, the cloud continues to grow due to a
combination of wind shear, cloud edge diffusion,

and downwind advection so the cloud shape be-
comes more complex. In particular, the volcanic
ash cloud may become apparently segmented as
documented by Schneider et al. (1995) for the Au-
gust Spurr cloud. During stage 3, the drifting cloud
is dynamically weakest, and it becomes discontin-
uous and diffuse (case of the August 1992 Spurr;
see fig. 3 of Schneider et al. 1995) unless it is rapidly
entrained and concentrated around mesoscale me-
teorological eddies (case of September Spurr cloud).
Cloud shape is less complex than in stage 2 in the
case where the cloud is drawn out, stretched, and
bent around a large mesoscale eddy (see fig. 4 in
Schneider et al. 1995). A similar evolution during
stage 3 was documented by Constantine et al.
(2000) for the August 1991 Hudson volcanic cloud,
which was observed to be drawn out, stretched, and
bent around the Antarctic polar vortex in the lower
stratosphere. In these latter cases, the volcanic
clouds appeared to slowly increase in total size, and
cloud width was much less than in stage 1 or 2.

Relationship of Cloud Evolution
to Tephra Deposition

The ash fallout from all three eruptions was sam-
pled and mapped by McGimsey et al. (2001; fig. 7).
The June deposit was mapped and sampled in a
more limited way (the map is undefined to the
north), while the August and September deposits
were followed for distances of up to 1000 km. The
latter two events show a clearly defined secondary

Figure 6.

AVHRR images at 0125 (A, B), 0331 (C, D), and 0511 GMT (E, F) on August 19, 1992, during and immediately

following the eruption of August 19, 1992. A, C, E, Band 4 brightness temperature images that show the expanding,
thunderstorm-like cold image of the volcanic cloud. B, A visible (band 1) image showing the dark color of the stage
1 ash cloud and its prominent shadow. D, F, Band 4-band 5 brightness temperature difference images in which the
opaque (optical depth ~4) core of the cloud shows no signal but the transparent fringe is brightly outlined. These
stage 1 volcanic clouds have opaque cores with optical depths of 4 or more, preventing retrievals of the entire cloud.

See Schneider et al. 1995.
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Figure 7. A-C, Fallout maps of the three 1992 eruptions (McGimsey et al. 2001). The location of the Wells Bay

fallout sample from the August blanket is marked by 44 in B.

maximum in mass/area of fall deposits located
within the broad fallout zone outlined downwind.
Size and shape determinations of distal Spurr fall-
out materials were made by Riley et al. (1999). Sev-
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eral of the authors also independently modeled the
dispersal data using trajectory models for single ash
particles and aggregates of different sizes/porosi-
ties/densities falling from a 10-14-km-high vol-
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canic cloud. The cloud outlines during stage 1 (and
very early during stage 2) in figure 6 correspond
with the region of isomass contours of 5000 g/m?
in figure 7B, which roughly defines the stage 1 de-
posit region and within which a first maximum of
mass accumulation is observed. We suggest that
these regions reflect fallout mainly as single sep-
arate particles. The conclusion from these dispersal
modeling studies is that the bimodal fallout ma-
terials (fig. 9) of the secondary-maxima regions fell
as aggregates of fine ash that had diameters of
100-300 um but contained a large majority of much
finer particles, most in the 10-30 um range. A size
distribution of one distal Spurr ash sample that fell

at Wells Bay (44 in fig. 7B) is shown in figure 9. It
is bimodal with peaks at about 18 um and 90 pm.
Two modes with similar values were documented
from equivalent locations relative to the secondary
maximum for other medial deposits (e.g., Mount
St. Helens, May 18, 1980; Carey and Sigurdsson
1982), and the larger mode of the deposits were
thought to reflect fallout of single particles, while
the smaller mode reflected aggregated ones that fell
prematurely. C. M. Riley (unpub. data) measured
the terminal velocities of the individual particles
in the Wells Bay sample and concluded that these
very fine ashfall materials would have fallen out at
distances about five to 10 times farther from the
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volcano if they remained as simple separate parti-
cles. The volcanic clouds observed by AVHRR
passed over the secondary maximum at times (4-15
h after eruption) that fall squarely in the stage 2 of
the volcanic cloud. Consistent with McGimsey et
al. (2001), we conclude that the secondary-maxima
regions of the latter two Spurr events are closely
associated with a period of particle aggregation.
Furthermore, based on position and travel times,
this aggregation correlates with stage 2 of cloud
evolution. It is thus likely that the rapid decreases
in particle mass retrieved (tables 4-6), optical depth
(fig. 1), and the burden of particles in the volcanic
cloud (fig. 3) during stage 2 result from this aggre-
gation process and the resulting mass removal from
the cloud.

After the first 18-24 h, Spurr’s volcanic clouds
drifted along undergoing minimal changes. They
either remained about the same in two-dimen-
sional area, optical depth, and ash-particle density
or slowly decreased in size (fig. 3). Detailed study
of the June cloud by Shannon (1996) showed that
that cloud lost area from its more rapidly drifting
leading edge. This suggests that meteorological pro-
cesses can cause the disappearance of volcanic
clouds, perhaps because fine ash in their lower parts
acts as cloud condensation nuclei. We note that the
decreases in SO, mass during this period are much
more rapid (e-folding only a few days) for these tro-
pospheric volcanic clouds than that estimated for
long-lived stratospheric clouds (Bluth et al. 1997),
which suggests that SO, may be removed by me-
teorological processes also.

Bonadonna et al. (1998) suggested that volcanic
cloud (i.e., umbrella region) fallout is expected to
produce three segments on a InT versus A'? dia-
gram. These three segments respectively corre-
spond to high, intermediate, and low Re number
settling regimes that impose a significant control
on ash thickness decay rates away from vent. From
this new work, however, it can be anticipated that
the effect of aggregation that was not accounted for
in modeling by Bonadonna et al. (1998) is likely to
reduce the three medial/distal segments to only
two segments. This is expected because, at least in
the Spurr case, aggregation appears to be highly ef-
ficient at removing most of the fine ash (which
would otherwise fall at low Re) as larger ash clus-
ters that fall within the intermediate Re regime of
settling. The above accounts for the relatively poor
match between the proportion of fine (low Re num-
ber) ash predicted by Bonadonna et al. (1998) as
compared to grainsize data for field deposits such
as the 1932 Quizapu and 1991 Hudson (see table 1
in Bonadonna et al. 1998). The Bonadonna et al.
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(1998) model systematically overestimates the
amount of low-Re ash at any distance compared to
field deposits because aggregation is highly effi-
cient at prematurely removing those particles. The
number of segments on InT versus A'? dispersal
diagrams also depends on initial grainsize distri-
bution of the material erupted. For example, if the
distribution is such that there are no high Reynolds
number particles (e.g., phreatomagmatic erup-
tions), then the expected two segments may end
up as only one because of the effect of ash aggre-
gation by the mechanism already suggested. This
accounts for the fact that not all plinian medial/
distal deposits display more than one segment even

when data coverage appears sufficient (see Pyle
1989).

Discussion

The Role of Ice in Volcanic Clouds. The 1994 Ra-
baul eruption (Rose et al. 1995a) has raised our
awareness of the role of hydrometeors (rain, hail,
snow, sleet, etc. [especially forms of ice]) in vol-
canic clouds. Work in the application of eruption
column models that includes microphysical pro-
cesses (Herzog et al. 1998; Textor 1999) has further
emphasized the possible role of ice. The source of
H,O for the formation of hydrometeors comes from
the magma and from entrainment (Woods 1993;
Glaze et al. 1997) and, in the case of Rabaul and
Soufriere Hills (Mayberry et al. 2001), from the
ocean. Even though there was no interaction with
the ocean, the Spurr volcanic clouds may have also
contained ice derived from freezing of the mag-
matic water vapor, from entrainment of atmo-
spheric moisture, and possibly water from the hy-
drothermal system or from melting of glacial ice
by the magmatic heat. One of the principal roles
of the ice could be to accelerate the fallout of fine
pyroclasts by enhancing or driving the aggregation.
Ice-coated pyroclasts may be more likely to stick
to each other than nonicy ones. Once aggregates
start to form, they will have a high surface area
relative to their mass (specific surface area) and
could rapidly fill up with ice by deposition of water
vapor and heterogeneous nucleation on the aggre-
gate. In the Spurr case, the dispersal data are con-
sistent with aggregates of 200 um and 60% porosity
(accretionary lapilli-like particles; i.e., with a den-
sity of 1025 kg/m?). Alternatively, the data is also
consistent with aggregates of 200 microns and 90%
porosity (loosely bound clusters like those de-
scribed by Sorem [1982] at Mount St. Helens) with
all the pore space filled with ice (bulk density of
about 1080 kg/m?). Since the bulk density without
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Figure 8. Spreading of upper-tropospheric and lower-stratospheric volcanic clouds (tropopause-straddling clouds) for

contrasting crosswinds at mean cloud height. a, Position of cloud front (x) versus time after 0055 GMT for the August
19, 1992, Spurr eruption as measured from a photograph showing that the cloud reached height within 13 min of
the eruption’s onset (Neal et al. 1995) and band 4 satellite imagery (see Schneider et al. 1995 for details on the images).
All values of x are measured relative to the position of the upwind leading edge of the cloud. Data are consistent
with short-lived radial spreading (for less than ca. 15 min) followed by downwind advection at an average windspeed
of ca. 20 m/s. b, Maximum crosswind cloud width (y[max]) versus distance to cloud front (x) measured as in a for
the August 19, 1992, Spurr eruption. Data are consistent with lateral spreading as an intrusive gravity current while



Journal of Geology

ice is only 270 kg/m?, the role of ice is important
to induce premature fallout and control the loca-
tion of the secondary maximum. If ice is present,
it is not present in sufficient amounts to suppress
the signal of ash absorption and scattering in the
two-band IR remote sensing. Microphysical mod-
eling (Textor 1999) suggests that ice/ash aggregates
that have high mass proportions are possible in vol-
canic clouds if only magmatic and entrainment
sources are considered. The proportions of ice
would be much less in the Spurr events than for
eruptions occurring in moist tropical atmospheres
because the component of H,O from atmospheric
entrainment would be much less. Doukas and Ger-
lach (1995) note that there was scrubbing of SO,
emissions by glacial melt and/or hydrothermal flu-
ids at Crater Peak before and after the 1992 erup-
tions, which implies that this source of water may
be potentially important. Although no evidence of
ice is seen in the fallout materials, the same models
suggest that ice would melt and evaporate before
deposition. We hope to apply the active tracer high-
resolution atmospheric model (ATHAM) in detail
to the Spurr volcanic clouds to determine whether
the Spurr eruptions emplaced in a dry subarctic
atmosphere would generate sufficient ice to en-
hance aggregation.

As explained above, the favored explanation for
the increases observed in SO, mass in the Spurr
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volcanic clouds is the coeruption of H,S and its
conversion after atmospheric emplacement (Rose
et al. 2000). There are no direct data supporting this
hypothesis, however. An alternative explanation is
possible if there could be a sequestration of SO, in
ice within the early volcanic cloud. This hypothesis
was invoked by Rose et al. (19954) to explain the
extremely low SO, mass in the volcanic clouds of
Rabaul, a volcano whose vent was at sea level and
was readily accessible to seawater. In the case of
the Spurr events, most of the H,O vapor in the
volcanic cloud would have to come from the
magma and from entrainment of moist tropo-
spheric air. This may be consistent with the rela-
tively minor suppression of SO, (~25%) and its re-
striction to the first day. During the fallout of ash
in stage 2, ice evaporates and SO, is released to the
atmosphere, which explains the second-day rises.
At this point, we offer this possible explanation as
a speculation.

Volcanic Cloud Hazard to Aircraft. The rapid de-
crease in ash mass during stage 2 of volcanic clouds
is potentially significant to the issue of volcanic
cloud hazards because nearly all seriously damag-
ing aircraft encounters have occurred within 24 h
after activity. The rapid decrease in ash burden (and
inferred ash concentration) in stage 2 of volcanic
clouds (fig. 3) suggests that the processes acceler-
ating the fallout of fine ash are efficient enough to

downwind advection at the windspeed is occurring. Data are also consistent with a steadily fed, 12-km-high cloud
of roughly constant volumetric flux with little apparent role for atmospheric diffusion or wind shear. Theoretical
predictions for different windspeeds at cloud height (Ht = 12 km) are also shown for comparison with the data. c,
Position of cloud front (x) versus time after 1045 PDT for the May 18, 1980, Mount St. Helens plinian cloud (see
Bursik et al. 1992 and Sparks et al. 1997 for a more detailed analysis of the Mount St. Helens cloud dynamics) for
comparison with a. Mount St. Helens data has been remeasured from figure 332 in Sarna-Wojcicki et al. (1981). In
contrast with a, all values of x are measured relative to vent position (but this makes little difference to analysis).
Data are also consistent with downwind advection at the local windspeed at cloud height, about 25-30 m/s. d,
Maximum crosswind cloud width (y[max]; measured as projection to N-S direction) versus distance (measured as
projection to E-W direction) to cloud front, measured as in b for the May 18, 1980, plinian cloud. Data are consistent
with lateral spreading as an intrusive gravity current while downwind advection at the windspeed is occurring. Data
are also consistent with a steadily fed, 15-km-high cloud of roughly constant volumetric flux with little role for
atmospheric diffusion or wind shear. Theoretical predictions for different windspeeds at cloud height (Ht = 15 km)
are also shown for comparison with the data. ¢, Maximum crosswind cloud width (y|max]) versus square root of
distance to cloud front (measured as in a) for the August 19, 1992, Spurr eruption. Data are consistent to a first order
with lateral spreading as an intrusive gravity current while downwind advection at the windspeed is occurring. Data
are also consistent with a steadily fed, 12-km-high cloud of roughly constant volumetric flux with little role for atmo-
spheric diffusion or wind shear. Theoretical predictions for different windspeeds at cloud height (Ht = 12 km) are
also shown for comparison with the data. f, Maximum crosswind cloud width (y[max]; measured as projection to N-
S direction) versus distance (measured as projection to E-W direction) to cloud front measured as in ¢ for the May
18, 1980, plinian cloud. Data are consistent to a first order with lateral spreading as an intrusive gravity current while
downwind advection at the windspeed is occurring. Data are also consistent with a steadily fed, 15-km-high (Ht
varying between 11 and 17 km) cloud of roughly constant volumetric flux with little role for atmospheric diffusion
or wind shear. Theoretical predictions for different windspeeds at cloud height (Ht = 15 km) are also shown for
comparison with the data.



692 W. I.

B

>
RN
|+t

N
N o
\‘

Percent

-
- 2]
| t—"

v |
\

0.1 1 10 100 1000
Diameter, microns

(=]
o (4]

Figure 9. Grain-size distribution (mass, %) as deter-
mined by laser diffraction (Malvern Instruments) for a
distal-ash sample located by 44 in figure 7B (data from
Riley et al. 1999).

remove a vast majority of the fine ash that resides
in volcanic clouds within about the first day or day
and a half. The burden (and concentration) of fine
ash in volcanic clouds stage 3 is low and may pos-
sibly be insufficient to cause engine failure, al-
though damage to the aircraft would occur. Tests
of the engine tolerance of ash may be needed to
support this suggestion that could serve to restrict
the hazard of volcanic clouds to a 1-2 d period after
eruption.

Human Health Effects of Fine Volcanic Ash. Our
observations of volcanic clouds are important with
respect to the fallout of fine ash that is a potential
hazard to human health. Moreover, the presence of
silica phases such as cristobalite (Baxter et al. 1999)
or even the small size of silicate ash (Norton and
Gunter 1999) is potentially harmful to health be-
cause of the respirable characteristics of fine ash
(<10 mm in diameter and especially that <2.5 ym
in diameter). The data we have presented on the
Spurr clouds shows that a lot of fine ash fell out
over Alaska in the stage 2 of the Spurr clouds, and
examination of the fallout materials (fig. 8) shows
that abundant fine ash is present within the ma-
terials of the distal ash blankets. As studies in Idaho
(Norton and Gunter 1999) have shown, volcanic
ash can be a dominant component of the respirable
dust (PM10) for many years after the eruption is
over, even in an area that has experienced only light
ashfall. Our work suggests that respirable dust
studies in distal-ash fall areas would be of interest
in assessing the human health hazards. The area of
the distal fall blankets and in particular the sec-
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ondary maximum of fallout thickness should be a
target of such future studies.

Radar Detection of Aggregation. Rose et al.
(1995b) demonstrated that C-band radar observa-
tions of the Spurr clouds were limited to stage 1
and were the result of particle sizes of at least 2
mm. It may be that new generation radar such as
Next Generation Weather Radar (NEXRAD; Krohn
et al. 1994), which was installed across the United
States after the Spurr events, will enable detection
of stage 2 aggregation that likely involves individ-
ual particle diameters in the range of 1-100 um (but
up to perhaps 1500 um) forming aggregates 100-500
pm (but with maximum diameters up to perhaps
2000 pm [see table 1 of Carey and Sigurdsson 1982
and fig. 2 of Bonadonna et al. 1998]). NEXRAD radar
measurements could potentially establish the
heights and locations for the aggregation and
should help clarify its nature and cause.

Conclusions

Three eruptions of Crater Peak, Mt. Spurr, in 1992
were similar in duration, intensity, volume, and
atmospheric conditions. All reached the strato-
sphere but were mainly dispersed in the upper tro-
posphere. The volcanic clouds were mapped and
measured for several days by both TOMS and
AVHRR satellite sensors. Each of the three volcanic
clouds had more detectable SO, mass in its second
day than in its first day of atmospheric residence,
suggesting that some of the magmatic sulfur release
was in the form of H,S or that SO, was temporarily
sequestered in ice within the first day of the vol-
canic cloud and emerged as ice evaporated during
fallout. In all three eruptions, the fallout of fine ash
(<25 um in diameter) was very rapid in the first 24
h of cloud residence, an observation that cannot be
explained by fallout as simple, separate particles.
The ash fallout blanket for each eruption was
highly elongated, and at least two had a prominent
secondary-mass maximum located 150-350 km
downwind. Fallout at these secondary maxima had
bimodal fine-skewed size distributions that reflect
aggregation of fine particles prior to fallout. The
Spurr volcanic clouds exhibited three stages of at-
mospheric residence. First, the first hour of atmos-
pheric residence was dominated by particle trans-
port, and fallout from the margins of the eruption
column and from an advected gravity current gen-
erated from it. Rapid fallout of large (>500 um in
diameter) ash and lapilli resulted in heavy fallout
near (<25 km) the volcano, affecting a small area
(<~300 km?). Second, after that first hour and during
the first day of residence, the Spurr clouds were
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expanding in size because of advection, wind shear,
and diffusion by winds but experiencing aggregate
fallout that resulted in reduction of the mass of fine
(<25 um diameter) ash by ~90% and in secondary-
mass fallout maxima regions that affect areas of
about 5 x 10* km? We suggest that aggregation can
reduce the expected three medial/distal segments
on InT versus A'? dispersal diagrams to two seg-
ments in dry plinian deposits and only one distal
segment in phreatomagmatic deposits. Finally, the
remaining several days of atmospheric residence of
the Spurr clouds were marked by constant or de-
clining cloud area and slowly declining particle and
SO, masses with losses apparently occurring from
the more rapidly moving cloud bases.

Ash-cloud spreading analysis in stage 1 and early
stage 2 suggests that the lateral spreading can be
accounted for by theory of Bursik et al. (1992) in
which lateral spreading is due to gravity flow while
the volcanic cloud front is advected at the wind-
speed at that level. This theory is useful in pre-
dicting the shape of the cloud between the upwind
leading edge and the location of maximum spread-
ing for 5 h or so (the same also works for Mount
St. Helens), while the position of the front snout
of the current is also easily accounted for without
invoking diffusion or wind shear. Volcanic clouds

1992 ERUPTIONS OF CRATER PEAK 693

are most hazardous in their first few hours, and the
first phase of cloud lateral spreading due to gravity
flow for VEI > 3 clouds is typically very rapid. This
rapid first phase of spreading importantly con-
strains the initial conditions for the next stages of
spreading due to wind shear and diffusion. We urge
those concerned with aircraft safety and developing
new volcanic cloud tracking models to take this
into account when initializing their advection-
diffusion schemes (eg., those used in volcanic ash
advisory centers). These conclusions on cloud
spreading should be limited to nonbifurcating
VEI = 3 dry subplinian eruptions until we can an-
alyze more cases.
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