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Abstract

Arctic sea ice (ASI) is playing a pivotal role in keeping global warming under control. However, the
recently amplified decreasing sea ice trend has become a major concern. Since satellites started
monitoring the ASI in 1979, every decade the Arctic has lost 13.1% of sea ice and the Arctic’s
September Sea Ice Extent (SIE) is now almost half compared to 1979. If this trend continues, it will
be ice-free by 2050. Due to its wide-ranging effects, forecasting Arctic sea ice extent is of utmost
importance. Accurate forecasts are essential to understanding the effects of global climate change,
protecting the polar ecosystem, determining marine shipping routes, assisting indigenous
communities, etc. In a world that is rapidly changing, foreseeing sea ice changes enables proactive
environmental, economic, and social responses.

Current machine learning (ML) based sea ice forecasting models are not better than typical statistical
models when the lead time is more than two months. This is because these models are built on
correlation and do not consider the actual cause of changes. Causal models, on the other hand, take
into account cause-and-effect relationships between the atmospheric variables. Causal discovery
techniques can directly identify these causal connections from observational data. Two popular
causal discovery algorithms are Granger Causality (GC) and PCMCI+ (which is an extended version
of the PC (Peter-Clark) algorithm with Momentary Conditional Independence). The main aim of this
research is to predict Arctic SIE for lead times of 1-6 months using daily and monthly Arctic sea ice
data. The objectives of this work are to identify the causal connections between Arctic sea ice and
ocean-atmospheric variables using GC and PCMCI+, use the identified causal features to build deep
learning models to predict SIE, and then compare the performance of the causal deep learning
models against traditional deep learning models (which are trained on both causal and non-causal
features).

We used the daily SIE data from 01/01/1979 to 12/31/2018 and monthly SIE data from 01/1979 to
08/2021 for the Pan-Arctic region, that is, 25 N. This dataset is curated by combining ERA-5
reanalysis and National Snow and Ice Data Centre (NSIDC) datasets, and then spatially averaged to
create time series data. In addition to SIE, the datasets contain 10 ocean-atmospheric variables:
surface pressure, wind velocity, specific humidity, air temperature, shortwave radiation, longwave
radiation, rainfall, snowfall, sea surface temperature, and sea surface salinity. After applying the
Granger Causality algorithm to these datasets, it identified all features except Sea Surface
Temperature (SST) as the causal features (for both daily and monthly data). PCMCI+ algorithm
identified Longwave Radiation, Snowfall, Sea Surface Temperature, Sea Surface Salinity, Surface
Pressure, and Sea Ice Extent for the daily data and Longwave Radiation, Sea Surface Temperature,
and Sea Ice Extent for the monthly data. Figure 1 (attached) shows the causal graphs identified by
PCMCI+ for daily and monthly data.



Since we're dealing with time series data of sea ice, Gated Recurrent Unit (GRU) and Long Short-
Term Memory (LSTM) are two popular and effective models for time series analysis. We used a
hybrid GRU-LSTM model for predicting SIE as combining these two models is proven to improve the
performance. The input layer has 21 neurons because PCMCI+ found that SIE has a maximum time
lag of 21 for the causal connections. The first hidden layer is the GRU layer with 64 neurons and
20% dropout, and the second hidden layer is the LSTM layer having 128 neurons and 20% dropout.
The third hidden layer is a dense layer with 64 neurons and the output layer has 1 neuron which
predicts SIE. Based on the model we choose for daily or monthly data, we feed the appropriate
features into the input layer.

The daily and monthly GRU-LSTM models are trained on the data up to 2013 from which 10% data is
used for model validation. The remaining data is to test the performance of the model. We trained the
models using mean_squared_error loss function, and Adam optimizer with a batch size 64 for 100
epochs. To evaluate the performance of the models, we used Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and Coefficient of Correlation (R?). The results are shown in Figure 2
(attached). For the daily data, we have three GRU-LSTM models based on the features they are
trained on: all features, GC causal features only, and PCMCI+ causal features only. GRU-LSTM
model trained on causal features identified by GC performs better (lower errors and higher R2) than
the other two models in most of the lead times. In similar ways, for the monthly data, we have four
models that were trained on: all features, GC features, PCMCI+ features identified for daily data, and
PCMCI+ features identified for monthly data. The combination of the later three causal models (which
considered only causal features) outperforms the model trained on all features (both causal and non-
causal).

Prediction of short-term or seasonal sea ice extent is important for various reasons including tracking
global warming patterns. This work aims to develop a generalized deep-learning model that
incorporates causality for both short-term and long-term SIE prediction. Our proposed model can
utilize both correlated and causal features for predicting sea ice up to 6-month lead times. The
results showed that out of 42 cases (7 models and 6 lead times), training the deep learning model
using only causally related features improves the predictive capability. However, the predictive
capability of these deep learning models can further be improved. Instead of training on all time lags,
we can train the deep learning model by considering only the identified time lags by the PCMCI+
algorithm. Identifying and training on the exact time lag may particularly help in predicting summer



sea ice.
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(a) For daily data (b) For monthly data

FiG. 1: Causal graphs identified by PCMCI+ algorithm
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FiG. 2: Performance comparison of the models
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