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ABSTRACT

Ice layers in glaciers, such as those covering Greenland and
Antarctica, are deformed over time. The deformations of
these layers provide a record of climate history and are useful
in predicting future ice flow and ice loss. Cross sectional im-
ages of the ice can be captured by airborne radar and layers in
the images then annotated by glaciologists. Recent advances
in semi-automated and automated annotation allow for sig-
nificantly more annotations, but the validity of these annota-
tions is difficult to determine because ground-truth (GT) data
is scarce. In this paper, we (1) propose GT-dependent and
GT-independent metrics for layer annotations and (2) present
results from our implementation and initial testing of GT-
independent metrics, such as layer breakpoints, local layer
density, spatial frequency, and layer orientation agreement.

Index Terms— Ice sheet, ice-penetrating radar, quality
metrics, auto-annotation

1. INTRODUCTION

Englacial ice layers are deformed and influenced by flow
fields, and as these layers are buried, the basal conditions are
recorded as described by Holschuh et al. [1]. Thus, englacial
ice layers can be used to infer climate history, glacial dy-
namics, and physical ice properties, among others [2]. Ice
penetrating radar can detect these layers [3, 4], which must
then be annotated to further understand and describe the flow
fields. Semi-automated methods are being developed [3]
to reduce the annotation burden, but these methods require
substantial ground truth validation in order to train a model.

Ground truth (GT) is defined as manual annotation by do-
main specialists, which is time-consuming and limited by the
quality of the data, which often makes reliable manual an-
notation impossible. We have developed several quantitative
metrics to characterize the quality and agreement of automatic
englacial layer detection. Because GT is scarce, we separate
our metrics into two groups: those that require GT and those
that are separate from GT.
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To aid in understanding these metrics, we produced a
method of quantifying and visualizing the local metrics as
quality maps. For example, quantification of layer density
allows for the identification of image artifacts and glacial
phenomena such as lakes or melt [5]. However, it also high-
lights the need for additional annotations of layers, enhanced
image processing, and need for alternative partitioning for the
training-testing-validation data incorporating layer density as
a factor [5].

2. CONTRIBUTIONS

We investigate and implement concepts from fingerprint
identification/quality analysis [6] and multi-target tracking
[7, 8, 9] to produce feature and quality maps and represen-
tative statistics for englacial layer segmentations that are
outputs of an unsupervised algorithm [10], and surface &
bedrock annotations output from a two-step deep neural net-
work model [11]. These methods use airborne ice-penetrating
radar data hosted by the Center for Remote Sensing of Ice
Sheets (CReSIS) [12], collected during several overlapping
flight paths.

We investigate an initial proof-of-concept metric suite and
analysis framework upon which we will build in future work.
We also provide recommendations for standardization and en-
hancement for metrics with high “labeling utility.” To this
end, we propose structured families of metrics that evaluate
different aspects of englacial layer detection. We consider
two conceptual groupings of metrics:

Metrics that require GT vs. do not require GT: When
GT is not available or is expensive to curate, it is beneficial to
consider quality metrics that don’t require the use of reference
data. The goal is not to completely negate the use of GT but
to decrease the manual burden of annotating it by producing
as many a priori automated annotations as possible. Attempt-
ing to measure layer fidelity/correctness or association errors
necessarily require GT. Metrics that do not require GT can be
assembled based on their utility as annotated GT labels for
training supervised approaches.

Local vs global metrics: Quality measures at a local level
preserve spatial/regional information, whereas global mea-
sures assign the whole image a single value, which enables
ranking and comparing results directly. Metrics can be com-
puted at the layer level to pinpoint instance-level anomalies



Fig. 1. Local layer orientation map. Red indicates positive
slope in degrees and blue indicates negative slope in degrees.
These orientations are used to compute orientation agreement
map, as shown in Fig. 2

and trends or can be windowed and/or gridded to provide full
coverage of the image. Local metrics can be assembled into
feature heatmaps, quality maps, and histograms. In contrast,
global metrics are reported on a per-image basis, typically ag-
gregated from local metrics and then aggregated into a single
quality score. The advantages of global metrics include the
ability to provide a single number to rank and compare mod-
els/algorithms. However, global quality scores can cause ag-
gregation effects that are opaque and may not reflect outputs
that are “mostly correct” or “good enough.”

Quality values and maps typically involve determining
a threshold of acceptance, so we present both the raw lo-
cal/global feature values and the computed quality values.
The visualization goals are to output a variety of quality
maps/feature maps wherein anomalous regions appear salient
and to display drill-down information such as local and global
histogram values. Future work will streamline and extend the
visualization for enhanced quality exploration, including in
virtual reality [13].

Unsupervised and supervised performances are dependent
on both radar image quality and annotation quality. In a two-
stage framework using an unsupervised model to produce la-
bels for a supervised approach [14], the quality of the de-
tected/segmented layers affects the supervised model’s per-
formance, such that errors are propagated. Therefore, in this
work we focus on detected layer quality; future work may
incorporate radar image quality measures as well.

For the GT-independent sub-family, we compute and vi-
sualize quality maps and local histograms representing layer
density/spacing (Figure 1), layer orientation agreement with
neighbors (Figure 2), local frequency components, and minu-
tiae detection (breakpoints, branch points, corners). The goal
of computing these local metrics is to accumulate a quality
feature vector in order to compute a quality score that accu-
rately represents “label utility” of the detected layer mask.

Fig. 2. Quality map of local layer agreement with 8-
connected neighbors. Darker areas indicate orientation dis-
agreement, while light areas indicate agreement between
neighboring patches. Fairly continuous areas with zero slope
have high agreement, while areas near the bedrock with dis-
continuities or drastic direction changes have low agreement.

Fig. 3. Local layer density map, where bright yellow areas in-
dicate areas with high layer density, and dark blue represents
areas with few or no layers. Layer density maps can be used
to identify areas with artifacts and/or incomplete annotation,
or to cue in on interesting glaciological morphology (e.g. ice
lenses, crevasses, melt ponds, etc.)

3. DATA

We use layers generated by [10, 11] on the ice-penetrating
radar data hosted by the Center for Remote Sensing of Ice
Sheets (CReSIS) [12]. The radar images were collected dur-
ing flight, with several intersecting flight paths.

Because we want to reduce dependence on GT for evalua-
tion while still enabling useful evaluation assessments, we fo-
cus on evaluation/quality metrics that can be computed with-
out GT. For the purposes of this paper, we consider “GT” to
include layer instance ids, layer pixel locations, and any im-
age artifacts or ice anomalies. Radar parameters and flight
paths are considered supporting metadata available for com-
puting both GT-dependent and GT-independent layer quality
metrics.



4. RESULTS

We compute local and global metrics and visualize them using
feature maps and quality maps, and accumulate a histogram
and quality feature vector that can be used to determine layer
quality effects on the supervised stage of Jebeli et al. [14].

4.1. Ground-truth Independent Metrics

Our first metric suite encompasses global and local measures
that can be computed without requiring accurate GT, as de-
fined in Section 3. In the GT-independent sub-family, we fur-
ther discuss the computed quality maps and features as dis-
cussed in Section 2. The advantages of these measures stem
from the retention of spatial information that can be used to
produce a map of high vs. low-quality areas based on each
metric. We use the aforementioned average layer density to
compute an appropriate window size for measuring orienta-
tions.

Layer breakpoints - Layer breakpoints are identified
when a layer ends before the end of the image. Layers are
generally continuous throughout the radar images, and iden-
tifying the “dropped” layers can help identify either layers
that have actually “dropped” from the image or if they are a
product of the layer detection model.

Local layer density - The local layer density is calculated
using a sliding window average with a 50% overlap (Fig. 3).
By counting the number of connected components per win-
dow, we can identify where dense layers areas are calculated
in the AI approach. These metrics may prove useful when
evaluating the overall performance of the approach for anno-
tation as they may indicate areas where layers are easier to
automatically annotate and areas the model fails to capture
the complexity of the layers.

Spatial frequency - The identified layers were modeled
mathematically using cubic splines to generate their equations
and interpolate the normals along evenly spaced intervals. By
testing the intersections of the normal with the nearest layer
above, we then calculate the Euclidean distance between lay-
ers. This allows us to generate mean distances across several
columns of the image and collapse these representative dis-
tances into means for the column. These were compared to
the 2D FFT spatial frequency map computed, as shown in
Fig. 4. Areas with low spatial frequency can be seen near
incomplete layers.

Orientation and orientation agreement - Fig. 2 shows
the orientation agreement quality map. By calculating the
layer normals we can understand the overall orientation of the
layers (shown in Fig. 1) and allows us to take a sliding win-
dow average and see how orientations agree with the neigh-
boring layers. This could indicate the flow of the ice or bias
in the model to produce layers that are “going in the same
direction.”

Fig. 4. Local spatial frequency map. Bright areas correspond
to lower spatial frequency (units of px/cycle), darker areas
indicate higher spatial frequency (i.e. decreased distance be-
tween layers). The maximum frequency recorded is the half
the window size (in this case, 30 px/cycle for a window size
of 75 px).

5. FUTURE WORK

In this paper, we focus mainly on ground-truth independent
metrics to avoid over-reliance on the availability and quality
of hand-picked/annotated layers. In our ongoing work, we
are planning to also compute several GT-dependent metrics,
from both the local and global families of metrics. These in-
clude inter-annotator agreement for GT (per available anno-
tated layer) and layer completeness for GT (per image).

For both the GT dependent and independent metric sets,
we plan to assemble a quality vector and examine the effects
of both high and low-quality layers (i.e., their predictive util-
ity) using the U-net framework in development by [11].

Our current work aims to establish a standardized frame-
work for evaluating the performance of models and tech-
niques that enable englacial layer detection, localization, and
association. In the near-term, we will also perform a sensitiv-
ity analysis of our quality metrics and supervised algorithm
performance. We will compare these metrics with domain-
expert quality assessment and investigate feature importance
using dimensionality reduction and other techniques.

Longer-term, we intend to explore the agreement of anno-
tations in multiple images captured in proximity to each other,
such as images captured by parallel flights of aircraft as well
as images captured by intersecting flight paths.

Our ultimate goal is to develop and implement a stan-
dardized evaluation, visualization, and annotation tool for ice
layer detection. This will help users employ the quality met-
rics to aid in correction/new annotation, provide quality as-
surance and quality control (QA/QC) for hand-picked layers,
and could ultimately support training a supervised algorithm
to correct them automatically.
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