

Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream

Ilaria Tabone, Alexander Robinson, Jorge Alvarez-Solas and Marisa Montoya

mail to ilaria.tabone@fau.de

What we don't understand: Greenland Holocene elevation change

- Summit Holocene elevation changes have been estimated from ice core analysis.
- Interestingly, 3D ice sheet models usually misrepresent such an impressive thinning.

Previous attempts to reduce data-model discrepancy: bedrock uplift and atmospheric forcing?

Ice thinning due to strong high Arctic climatic and isostatic effects. Not valid for other sites.

8 -6

Data-model discrepancy...Towards a new approach

Credits to Greve and Robinson

Can we reduce the NGRIP thinning mismatch by improving the climate forcing and the fast ice flow representation in a 3D ice sheet model?

Climate/ocean forcing?

Are modelled past surface Tatm, precip, Tocn used to force the model accurate?

Calving Ce shelf Submarine melting Ocean

Basal dynamics?

Basal conditions are poorly represented, especially in fast streaming areas (NEGIS) where basal sliding is higher

Methods: 3D ice-sheet model Yelmo Model forcing

https://github.com/palma-ice/yelmo

Robinson et al., 2020

Methods: 3D ice-sheet model Yelmo Model forcing

Methods: 3D ice-sheet model Yelmo Model parameters

Regularized-power basal friction law

$$\boldsymbol{\tau}_{\mathbf{b}} = -C_{\mathbf{b}} \left(\frac{|\mathbf{u}_{\mathbf{b}}|}{|\mathbf{u}_{\mathbf{b}}| + u_0} \right)^q \frac{\mathbf{u}_{\mathbf{b}}}{|\mathbf{u}_{\mathbf{b}}|}$$

$$\begin{aligned} \text{Friction coefficient scaled wrt bedrock} \\ \text{elevation...} \\ \lambda = \begin{cases} 1 & \text{if } z_b > z_1 \\ \max\left[\exp\left(\frac{z_b-z_0}{z_1-z_0}\right), \lambda_{\min}\right] & \text{if } z_b < z_1 \end{cases} \end{aligned}$$

Results: NE Holocene retreat and implications in the NGRIP thinning

Tabone et al., in review

Take-home message

- NGRIP Holocene surface thinning is partially explained by its dynamical response to the NE retreat (and NEGIS formation).
- NE high air and ocean temperatures trigger the early retreat of the NE sector
- Our modelled **NE retreat follows fairly well the deglaciation timings** as suggested by 3 sediment cores.
- These results suggest that the role of the NE basin sector in shaping the summit Holocene thinning has been underestimated so far.

14.8 kyr ago

THANKS!

Previous attempts to reduce data-model discrepancy: bedrock uplift?

Perturbed model parameters

$$\begin{aligned} \mathbf{\dot{s}}_{N_{0}} \mathbf{\dot{s}}_{N_{0}} \mathbf{\dot{s}}_{10}^{(\frac{e_{0}}{C_{c}})(1-s)} \\ W_{\text{til}}/W_{\text{til}}^{\text{max}} \end{aligned}$$

Surface ablation

$$\frac{t}{T_{m}} [\tau_{a}(1-\alpha_{s})S+c+\lambda T]$$

Isostasy

Lithosphere relaxation time tau

Subsurface melt

$$B_m(t) = B_{ref} + \kappa \Delta T_{ocn}(t)$$

Conclusions

- which modulates the rate and the timing of the thinning through progressive fast flow inland penetration.
- deglaciation. More Holocene transient climatologies are needed to accurately assess the heterogeneous deglaciation history across Greenland.
- stream geometry).

NGRIP Holocene thinning is driven by the formation and development of the nearby NEGIS,

NE high temperatures trigger the early retreat of the NE sector, defining the timing of the

These results suggest that the role of the NE basin sector in shaping the summit Holocene thinning has been underestimated so far. Summit thinning data-model mismatch could be partially related to the typical wrong model representation of the NEGIS (in terms of both dynamics and

Tabone et al., in review

Towards a new approach: basal sliding and atmospheric/oceanic forcings

Credits to Greve and Robinson

Can we reduce the NGRIP thinning mismatch by improving the climate/ocean forcing and the representation of fast flow in a 3D ice-sheet model?

