
www.elsevier.com/locate/jvolgeores
Journal of Volcanology and Geother
Parallel adaptive numerical simulation of dry avalanches over

natural terrain

A.K. Patraa,*, A.C. Bauera, C.C. Nichitab, E.B. Pitmanb, M.F. Sheridanc, M. Bursikc,

B. Ruppc, A. Webberc, A.J. Stintonc, L.M. Namikawad, C.S. Renschlerd

aDepartment of Mechanical and Aerospace Engineering, State University of New York-Buffalo, 605 Furnas Hall, SUNY, Buffalo,

NY 14260, USA
bDepartment of Mathematics, University at Buffalo, SUNY, Buffalo, NY 14260, USA

cDepartment of Geology, University at Buffalo, SUNY, Buffalo, NY 14260, USA
dDepartment of Geography, University at Buffalo, SUNY, Buffalo, NY 14260, USA

Accepted 29 June 2004
Abstract

High-fidelity computational simulation can be an invaluable tool in planning strategies for hazard risk mitigation. The

accuracy and reliability of the predictions are crucial elements of these tools being successful. We present here a new simulation

tool for dry granular avalanches using several new techniques for enhancing numerical solution accuracy.

Highlights of our new methodology are the use of a depth-averaged model of the conservation laws and an adaptive grid

Godunov solver to solve the resulting equations. The software is designed to run on distributed memory supercomputers and

makes use of digital elevation data dynamically, i.e., refine the grid and input data to finer resolutions to better capture flow

features as the flow evolves. Our simulations are validated using quantitative and qualitative comparisons to tabletop

experiments and data from field observations. Our software is freely available and uses only publicly available libraries and

hence can be used on a wide range of hardware and software platforms.

D 2004 Elsevier B.V. All rights reserved.

Keywords: granular flow; Grain flow; flow simulation; GIS; adaptive methods; parallel computing
1. Introduction

Volcanic activity results in a variety of mass flows

ranging from passive gas emission and slow effusion
0377-0273/$ - see front matter D 2004 Elsevier B.V. All rights reserved.

doi:10.1016/j.jvolgeores.2004.06.014

* Corresponding author. Tel.: +1 716 645 2593; fax: +1 716

645 3875.

E-mail address: abani@eng.buffalo.edu (A.K. Patra).
of lava to explosions accompanied by development of

a stratospheric plume with associated dense, pyro-

clastic flows of red-hot ash, rock, and gas that race

along the surface away from the volcano. Often, these

flows mix with melted snow creating a muddy mix of

ash, water, and rock. Accompanying seismic activity

at a volcano can trigger slope failures generating a

giant debris avalanche that can ruin vast areas of
mal Research 139 (2005) 1–21

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–212
productive land, destroy structures, and injure or kill

the population of entire cities. In these avalanches and

debris flows, particles are typically centimeter- to

meter-sized, and the flows, sometimes as fast as

hundreds of meters per second, range over tens of

kilometers. As these flows slow, the particle mass

sediments out, yielding deposits that can be a hundred

meters deep and many kilometers in length.

The task of modeling these events is complex and

at present only beginning to be understood. Never-

theless, public safety planning needs and scientific

investigations will benefit greatly from the develop-

ment of tools and designed to answer the simple

question:

If a mass flow were to be initiated at a particular

location, what areas are going to be affected and to

what degree by that flow?

In this paper, we describe our efforts at developing

a tool (the TITAN2D simulation code) to satisfy this

need.

A popular class of models for these events treats

them as depth-averaged granular flows governed by

Couloumb-type interactions (Hutter et al., 1993;

Iverson and Denlinger, 2001; Gray, 1997) with or

without a pore fluid—this is the model of the physics

we choose to use in this development. We will use as

a starting point the equations of Iverson and Denlinger

(2001) in the dry limit. The scale of the flows and

complexity resulting from the modeling of flows over

natural terrain will require large-scale computation

and special techniques to reliably obtain good

numerical simulations of the complex flows—the

focus of this paper. Our numerical algorithm for

solving the governing model equations is an adaptive

grid second-order Godunov solver (Toro, 1997). Local

mesh adaptivity is crucial to reliably resolving flow

features and the necessary shock capture. We have

also developed suitable computational techniques

(multiprocessor computing, dynamic load balancing,

etc.) to enable the necessary large-scale simulations

on popularly available cluster computers and more

efficient distributed memory multicomputers.

An important feature of this work is the incorpo-

ration of a direct connection to geographic informa-

tion system (GIS) databases. Thus, we obtain required

topographic data dynamically as needed by the

progress of the simulation at resolutions appropriate
for the accuracy of the computation. These ingredients

allow us to simulate large flows over realistic terrain;

here, we provide an example of such a simulation at

little Tahoma Peak (see accompanying paper in this

issue by Sheridan et al., 2004).

We begin our discussion with a review of the

physics modeling used in our simulation tool and

derive the basic governing equations. We follow by

providing details of the solution methodology.

Numerical tests are used to verify the code and study

its performance under different choices of model and

numerical parameters. Validation using tabletop

experiments and simulation of observed flows com-

pletes the presentation. It is important to note that as a

modeling tool, the TITAN2D code has several new

features that reduce computation and modeling errors,

but as with all simulation tools for such complex

physical phenomena, many assumptions are inherent

in the results presented. All results and outputs are

hence qualified and subject to the validity of the

assumptions made. Regardless, we believe that careful

use of such tools can provide much valuable insight

and assist in the hazard analysis process.
2. Governing equations

2.1. Models

We model the geophysical mass flows on realistic

terrain, such as depth-averaged granular continuua.

This approach for describing debris flows was first

suggested by Savage and Hutter (1989). The original

one-dimensional theory was later generalized to two

dimensions by the same authors, by introducing a

simple curvilinear coordinate system with orthogonal

directions being set by the maximum slope (x-axis),

the normal to the local surface (z-axis), and a cross-

slope axis normal to the other two. However, these

equations are not frame-invariant and hence unsuit-

able for modeling of flows over general terrain. In

recent work, Iverson and Denlinger (2001) derive

depth-averaged, frame-invariant equations for fluid-

ized granular masses on three-dimensional terrain.

They also include the effect of interstitial fluid using a

simple mixture theory approach. These equations

form a system of hyperbolic conservation laws,

referred to as the debris flow equations (DFE). In a

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 3
follow-up paper, Denlinger and Iverson (2001) also

report on basic numerical solutions to the DFE using a

first-order Godunov method and an approximate

Riemann solver.

These debris flow equations in the zero pore

pressure limit constitute the starting point of our

work. We solve the equations using a finite volume

scheme with a second-order Godunov solver. The

program runs in parallel, using the message passing

interface standard (MPI) to allow communication

between multiple processors. The algorithm uses a

local adaptive mesh refinement for shock capturing,

and dynamic load balancing for the efficient use of the

computational resources.

We begin by briefly reviewing the derivations of

the model equations. For a detailed description of the

depth-averaged theory for debris flows, we refer the

reader to the reference papers cited above.

2.2. Basic equations and boundary conditions

In a fixed Cartesian coordinate system OXYZ, with

origin O defined so that the plane OXY is approx-

imately parallel to the basal surface, we write the

conservative form of the equations for an incompres-

sible continuum:

jbu ¼ 0 ð1Þ

B q0uÞ þjb q0u� uÞ ¼ �jbT þ q0gðð ð2Þ

where q0 is the density of the medium, u is the

velocity field, T is the Cauchy stress tensor, and g is

the gravitational acceleration.

The granular material is assumed to be an incom-

pressible continuum satisfying a Mohr Coulomb law,

which states that slip planes appear inside the bulk as

soon as the internal state of stress overpasses the

Coulomb criteria of failure, rt/rn=tan uint, where rn

and rt are the normal and shear stresses acting on a

plane element inside the granular material, and uint is

the internal friction angle of the medium.

Kinematic boundary conditions are imposed at the

free surface interface, of equation Fs(x,t)=s(x,t)�z=0,

and at the basal surface interface, with equation

Fb(x,t)=b(x,t)�z=0:

BtFs þ ubjð ÞFs ¼ 0 at Fs x; tð Þ ¼ 0 ð3Þ

BtFb þ ubjð ÞFb ¼ 0 at Fb x; tð Þ ¼ 0 ð4Þ
Written explicitly on components, the above

equations are:

Btsþ vxBxsþ vyBys� vz ¼ 0 at z ¼ s x; tð Þ ð5Þ

Btbþ vxBxbþ vyByb� vz ¼ 0 at z ¼ b x; tð Þ ð6Þ

where u=(vx, vy, vz) denotes the velocity vector

and its components.

Boundary conditions for the stresses are stress-free

condition at the free surface and a Coulomb-like

friction law imposed at the interface between the

granular flow and the basal surface:

Tsns ¼ 0 at z ¼ s x; tð Þ ð7Þ

Tbnb � nbðnbbTbnbÞ ¼ ur

jurj tanubed

ðnbbTbnbÞ at z ¼ b x; tð Þ ð8Þ

The superscripts s and b applied to the stress and to

the components of the normal vector refer to values of

the variables which are assumed at the free surface (s)

and at the base of the flow (b). n denotes normals to

surfaces with the superscripts s and b referring to the

free surface and the base of the flow. ur=ub+�ub� is

the velocity vector whose components are equal to the

difference between the upper- and lower-side velocity

values at the boundary layer of infinitesimally small

thickness that forms at the basal contact surface. The

factor (ur)/|ur| in the tangential component of the shear

at the surface element of normal nb, indicates that the

Coulomb friction opposes the avalanche motion.

The three-dimensional system gives a detailed

description of the flow; however, the model requires

supplementary relations, such as an equation for the

free surface and also a three-dimensional treatment of

Coulomb stresses, which add to the complexity of the

problem.

Under the additional assumption that the flowing

layer is thin compared to its lateral extension, the

detailed motion of the mass through depth becomes

relatively unimportant except in a thin layer near the

bed. The processes in this boundary layer can be

approximated by the Coulomb-type basal sliding law,

and an average of the system of equations over the

depth of the flow provides a simpler model that can be

handled numerically. The depth-averaged model is

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–214
appropriate for geophysical mass flows when the

assumption of shallowness holds. The case for this

assumption has been made by many (see, for example,

Hutter et al., 1993; Iverson and Denlinger, 2001).

2.3. Depth-averaged theory

In this subsection, we give an outline of the depth-

averaging procedure used to derive the system of

equations for the dry avalanches model.

We start by integrating the continuity equation in the

z direction. Using Leibniz’ formula to interchange the

differentiation and integration operators, we obtain:

Bthþ Bxðhv̄xÞ þ Byðhv̄yÞ
� ½Btzþ vxBxzþ vyByz� vz	sb ¼ 0 ð9Þ

where the subscript x, y, z, and t refer to the coordinate

axes and time. The notation Bx indicates partial

derivative with respect to x.

In Eq. (9), v̄x and v̄y are the averaged lateral

velocities defined as follows:

hv̄x ¼
Z s

b

vxdz; hv̄y ¼
Z s

b

vydz;

h x; tð Þ ¼ s x; tð Þ � b x; tð Þ ð10Þ

where s(x, t) and b(x, t) are the free surface and base as

defined earlier. Substituting the kinematic boundary

conditions from Eqs. (5) and (6) in Eq. (9), we obtain

the equation for the depth-averaged mass balance:

Bthþ Bx hv̄x
�
þ By hv̄y

�
¼ 0

��
ð11Þ

Integrating the x momentum equation in the normal

direction and using the Leibnitz formula to interchange

the order of differentiation and integration, we obtain

the depth-averaged x momentum balance equation:

q½Btðhv̄xÞ þ Bxðhv̄2xÞ þ Byðhv̄xv̄yÞ	

� q½vxðBtzþ vxBxzþ vyByz� vzÞ	sb
¼ � BxðhT̄xxÞ � ByðhT̄yxÞ � ½Tzx	sb þ qgxh ð12Þ

These equations need to be supplemented with

constitutive models. The shallowness assumption

gives a bhydrostaticQ equation for the normal stresses

in the z direction:

Tzz ¼ h� zð Þqgz ð13Þ
which after depth averaging becomes a relation for the

depth-averaged normal stress in the z direction,

T̄zz=qgzh/2. Using the Mohr Coulomb theory, the

depth-averaged normal stresses T̄xx and T̄yy can be

related to the normal stress T̄zz by using a lateral stress

coefficient kap, so that:

T̄xx ¼ T̄yy ¼ kapT̄zz ð14Þ
The active or passive state of stress is developed if

an element of material is elongated or compressed, and

the formula for the corresponding states can be derived

from the Mohr diagram. It may be easily shown that:

kap ¼ 2
1F 1� cos2uint 1þ tan2ubedÞð 	½ 1=2

cos2uint

� 1 ð15Þ

in which b�Q corresponds to an active state (Bv̄x/

Bx+Bv̄y/ByN0), respectively, b+Q to be the passive state
(Bv̄x/Bx+Bv̄y/Byb0).

The shear stresses T̄yx and T̄xy can also be related to

the normal stresses T̄xx and T̄yy, using a simplification

of the Couloumb (nonlinear) model to assume a

constant proportionally simplification based on a long

history of such a practice in soil mechanics (Rankine,

1857) and an alignment of the stress axis. The equation

for the lateral shear stresses can be written as:

T̄ yx ¼ T̄ xy ¼ � sgnðBv̄x=ByÞ

 kap
1

2
qgzh sinuint ð16Þ

Finally, the formula for the shear stress at the basal

surface Tzx can be derived from the basal sliding law.

For curving beds, this relation is:

Tzx ¼ � v̄xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2x þ v̄2y

q
�
qgzh 1þ v̄x

rxgz

�� 	

 tan ubed ð17Þ
where rx is the radius of local bed curvature, and the

b�Q indicates that basal Coulomb stresses oppose

basal sliding. Note that the above relationship is

slightly modified from the original in Iverson and

Denlinger (2001), where sgn(v̄x) was used instead of

v̄x=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄ 2
x þ v̄ 2

y

q
. Our observation indicates that in cases

where the momentums in the x and y directions differ

significantly (e.g., flow down a channel), this relation-

ship provides the necessary scaling in each coordinate

direction.With this modification, the frictionmobilized

is in proportion to the velocity in that direction.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 5
Substituting the kinetic boundary conditions (Eqs.

(5) and (6)) and the conditions for the stresses at the

free surface (Eq. (7)), and also using the relations

between stresses (Eqs.), (16), and (17) that are

derived from the Coulomb theory in Eq. (12), the

depth-averaged x momentum equation can be written:

Btðhv̄xÞ þ Bx

�
hv̄2x þ

1

2
kapgzh

2

�
þ Byðhv̄xv̄yÞ

¼ gxh� hkapsgnðBv̄x=ByÞByðgzhÞsinuint

� v̄xffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2x þ v̄2y

q
�
gzhð1þ

v̄x

rxgz
Þ
	
tanubed ð18Þ

The relation for the y momentum equation is similar,

and it can be obtained by interchanging x and y in Eq.

(18).
3. Solution techniques

3.1. First-order scheme

The system of equations governing the flow of dry

avalanches on arbitrary topography was derived in

terms of conservative variables and can be written in

vectorial form (overbars have been omitted to simplify

the notations):

U t þ F Uð Þx þG Uð Þy ¼ S Uð Þ ð19Þ

where U=(h, hvx , hvy)
t, F=(hvx , hvx

2+0.5kapgzh
2,

hvxvy)
t, G=(hvy, hvxvy, hvy

2+0.5kapgzh
2)t, and S=(0,

Sx, Sy)
t and where:

Sx ¼ gxh� hkapsgn

�
Bvx

By

�
ByðgzhÞsinuint

� vxffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q gzh 1þ vx

rxgz

�� 	
tanubed

�

Sy ¼ gyh� hkapsgn

�
Bvy

Bx

�
BxðgzhÞsinuint

� vyffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2x þ v2y

q gzh 1þ vy

rygz

�� 	
tanubed ð20Þ

�

The components of the unknown vector U represent

pile height and two components for the depth-

averaged momentum. The above system of equa-

tions is strictly hyperbolic away from vacuum state
h=0 and can be solved numerically by using

standard techniques.

We use an explicit Euler scheme for the differential

equation with right hand side given by the source

terms S(U) and a Godunov finite volume solver for

the remaining system of hyperbolic conservation

laws. Background information on these methods are

found for example in Toro (1997) and Hirsch (1990).

We are currently investigating higher-order methods

including adaptive discontinuous Galerkin Methods,

and the results will be presented in a future paper.

We use a Cartesian mesh to discretize our domain.

The conservative variables (h, hvx, hvy) are discre-

tized as piecewise constants on each rectangular

computational cell, and the equations are approxi-

mated by infinite differences. The evolution of the

flow to the next time step depends on the advective

flux at the cell interface, which results form the wave

interaction at the boundaries between cells. The fluxes

are computed by solving the Riemann problem for the

two constant states at each side of the boundary edge.

For the one-dimensional system Ut+F(U)x=S, a

Godunov scheme gives the explicit formula Ui
n+1=

Ui
n�Dt/Dx[Fi+1/2

n �Fi�1/2
n]+Si, where Fi+1/2

n is the

intercell numerical flux corresponding to the boundary

between cells i and i+1. The discussion below

describes the treatment of fluxes in the x direction,

and in practice a similar expression has to be derived

for the physical flux G.

We use the HLL (Harten, Lax, van Leer; Toro,

1997) approximation Riemann problem at the cell

interface. Other exact or approximate Riemann

solvers may be used [e.g., HLLC (Toro, 1997) and

Roe (LeVeque, 1992)]; however, we have found there

to be little difference, provided the computational grid

is sufficiently fine.

The first-order HLL solver we implemented uses

cell-centered values. Characteristic speeds are the

eigenvalues of the Jacobian matrix of F and are given

by (ui+ci, ui, ui�ci), where ci=
ffiffiffiffiffiffiffiffiffiffiffiffi
2kaphi

p
. We estimate

the signal velocities in the solution of the Riemann

problem by the following choice proposed by Davis

(1998):

Cl
iþ1=2 ¼ min 0;min uiþ1 � ciþ1; ui � ciÞð Þð ð21Þ

Cr
iþ1=2 ¼ max 0;max uiþ1 þ ciþ1; ui þ ciÞð Þð ð22Þ

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–216
and the fluxes at the frontier between cells by:

Fn
iþ1=2 ¼

Cr
iþ1=2FðUn

i Þ� Cl
iþ1=2FðUn

iþ1ÞþCl
iþ1=2C

r
1þ1=2ðUn

iþ1 � Un
i Þ

Cr
iþ1=2 � Cl

iþ1=2

ð24Þ

where F is the physical flux described in Eq. (19).

Flow fronts occur when zero flow depth exists

adjacent to a cell with nonzero flow depth. The

errors in front propagation speeds can be very large,

therefore separate estimates for speeds are needed in

this case. For a front moving in the positive x

direction ci+1=hi+1=0, and the correct solution

consists of a single rarefaction wave associated with

the left eigenvalue. The wet/dry front corresponds to

the tail of the rarefaction and has exact propagating

speed ui+1=ui+2ci. This problem is similar to the

problem involving vacuum states in shock tubes, and

the rationale for this approach is discussed in Toro

(1997).

Front tracking is another way of dealing with wet/

dry fronts; however, it is quite complicated and

computationally expensive for multidimensional

flows, hence we chose not to implement it in the

current version of our code.

3.2. Second-order description

To implement the second-order Godunov method

we follow the Van Leer approach described in

Davis (1998). To increase spatial accuracy, the

solution is represented by piecewise linear approx-

imations, and slope limiting is used to prevent

unphysical oscillations. To increase time accuracy, a

second-order explicit predictor corrector scheme is

implemented.

Eq. (19) can be rewritten:

U t þ AbBxU þ BbByU ¼ S Uð Þ ð25Þ

where A and B are the Jacobian matrices of F and G,

respectively.

Given Ui,j
n, the (i, j) cell average at time nDt, the

midtime predictor step is:

U
nþ1

2

i;j ¼ Un
i;j �

Dt

2
An

i;jDxU
n
i;j �

Dt

2
Bn
i;jDyU

n
i;j þ

Dt

2
Sni;j

ð26Þ
where, in the formula above, DxU, and DyU are the

limited slopes for U in the x and y directions,

respectively.

In the corrector step, a conservation update of U is

computed as follows:

Unþ1
i;j ¼ U

nþ1
2

i;j � Dt

Dx
½Fn

iþ1=2 � Fn
i�1=2	

� Dt

Dy
Gn

iþ1=2 �Gn
i�1=2

i
þ DtSi;j ð27Þ

h

This time, the numerical fluxes are computed using as

left and right states the values obtained by interpolat-

ing the center values to the edge position; that is, for

Fi+1/2
n use Eq. (24) with Ui+1/2,j

l =Ui,j
n+1/2+(Dx/2)DxUi,j

n

and Ui+1/2,j
r =Ui+1,j

n+1/2�(Dx/2)DxUi+1,j
n instead of Ui

n and

Ui+1
n. In the above formulas, Dx and Dy are used again

to denote the limiting slopes in the x and y directions.
4. Computational methodology

In this section, we will describe the core

computational methodologies used in the TITAN2D

code.

4.1. Adaptive methods

Adaptive methods, wherein the resolution of the

numerical approximation is tailored to the solution,

have demonstrated their ability to improve the accu-

racy of numerical simulation without significantly

increasing the computational cost. Berger and Collela

examined solution-adaptive schemes for hyperbolic

problems in Berger and Collela (1989). Although

major gains can be obtained by using adaptive

methods, these gains do come with a price. In order

to utilize adaptive methods successfully, we need to

determine (a) where and how to adapt, and (b) how to

make the process efficient.

4.1.1. Error indicators

The prerequisite to the successful use of adaptive

methods is knowing where to adapt the computational

grid. Ideally, an error estimate is calculated which

bounds the error in the numerical approximation, and

a convergence rate with regard to the mesh parameters

is used to minimize the solution error. For many

nonlinear problems, such as the equations presented

Fig. 1. An adapted irregular mesh.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 7
earlier, determining an error estimate and/or conver-

gence rates can be difficult and computationally very

expensive. In these cases, error indicators are often

used to adapt the mesh. Error indicator shows regions

where there are errors in the numerical approximation

but do not bound the error. Often, the simplest

adaptive strategies involve only examining areas of

large derivatives and/or large fluxes or other regions

of interest.

In the current version of the TITAN2D tool, we use a

relatively simple measure of error for adaptivity. A

simple scaled norm of the fluxes around the boundary

serves as the primary error indicator. We define the

quantity:

EK ¼ 1

dk
l
BXK

jFj2ds ð28Þ

as a measure of the error associated with cell K. A

fixed fraction refinement strategy, i.e., all cells

whose EK ranks in the top p percent are selected

for refinement. While this strategy does a good job

of selecting areas with high flow rates for refine-

ment, it does not correctly track the flow front

where refinement is critical. Thus, we supplement

this criteria by also tracking the change in the local

flow depth variable with time, i.e., hK (t n)

�hK(tn�1). A combination of these criteria appears

to provide satisfactory refinement of grids. More

sophisticated strategies are the subject of current

work.

4.1.2. Local refinement of mesh

Local refinement (often termed h refinement in the

literature on adaptive methods terminology we avoid

here) can be achieved by either splitting an element up

into smaller elements or remeshing the domain.

Automatic mesh generation is not as efficient as

splitting the elements, thus we employ the latter. For

the quadrilateral elements used in our work here, an

irregular mesh as shown in Fig. 1 will result from

splitting elements locally. Such irregular meshes

require complex connectivity information to be

maintained and updated as the grid changes. To keep

this information manageable and the coding complex-

ity manageable, we impose the one-irregularity rule

(Demkowicz et al., 1989). This essentially requires

that an element can have at most two neighbors on an

edge. The result of the one-irregularity rule is that the
local refinement of an element can trigger refinements

of neighboring elements. This is shown in Fig. 6.

4.1.3. Unrefinement of a mesh

While refinement of a mesh is done to maintain

solution quality, unrefinement of a mesh is done to

minimize the amount of computation needed to

calculate an approximate solution. As the simulation

proceeds in a dynamic problem, certain portions of the

mesh that were previously adapted to maintain

numerical solution quality no longer need such a high

mesh resolution and can be unrefined. Because

unrefinement of a mesh is only done to save

computation, it is not useful to have computationally

intensive procedures to calculate which elements to

unrefine. Because of this, the unrefinement scheme is

not as aggressive as the refinement scheme. To reduce

the amount for computation for the unrefinement

scheme, three main ideas are used:

(1) Unrefinement of refined elements: Only ele-

ments that were previously refined are allowed to be

unrefined, and the elements are only unrefined to their

parent element. This reduces the complexity of the

unrefinement procedure and ensures that no new

elements need to be created. A drawback of this

constraint is that no unrefinement can be performed

beyond the original mesh, and if the original mesh is

too fine, it cannot be adopted to a proper size.

(2) Triggered unrefinement: Because of the one-

irregularity rule, unrefinement of a group of elements

may trigger unrefinement of other elements. If

unrefinement of a group of elements would trigger

unrefinement of other elements, the unrefinement is

not performed. This ensures that no elements are

unrefined which should not be unrefined. Calculating

the triggered unrefinement can be a significant

computational task.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–218
(3) Unrefinement of an element on a subdomain

boundary: Unrefinement of an element which is on

the subdomain boundary is not allowed. Because of

this, unrefinement on one processor will not require

updating neighbor information on another processor.

This reduces the amount of interprocessor communi-

cation. While this may seem too restrictive, it is

alleviated through the use of dynamic load balancing.

It is assumed that after performing dynamic load

balancing, the elements that should have been

unrefined but were not because they were on the

subdomain boundary will become interior elements

and can be unrefined later on.

4.1.4. Ghost cells

To calculate the finite difference approximations of

the derivatives in the governing equations and the

fluxes between elements, the elements in the simu-

lation code need solution information from neighbor-

ing elements. For serial codes, all elements will be on

the same processor and thus accessible to the

processor. This is not the case for parallel codes,

because neighboring elements may be located on a

different processor and not be directly accessible. To

avoid excess interprocessor communication, a bcopyQ
of the off-processor neighboring elements is stored on

the processor. These bghost cellsQ only store informa-

tion, and no simulation calculations are performed on

these cells. Fig. 2 shows the ghost cells for a two

subdomain partition.

4.2. Adaptive Godunov algorithm description

The basic Godunov scheme presented in Section 3

can be adapted with relative ease for use on irregular

meshes (see also Berger and Collela, 1989). The

calculation of numerical fluxes at the interface

between different grids and at the interface between

domains belonging to different processors have to be

treated separately. Fluxes crossing boundaries have to

be balanced at each cell interface so that global and

local conservation of mass and momentum are

preserved.

The calculation of fluxes is done concurrently on

the positive_ x_ side (see Fig. 1) of the current element

being updated and on the negative_ x_ side of the

neighbor element that shares the interface. With the

bone-irregularity ruleQ, the two new possible config-
urations are (a) generation 0 element has a generation

1 neighboring element to the bpositive_ x_ sideQ, and
(b) generation 1 element has a generation 0 element

neighbor on the bpositive_ x_ sideQ. For the case when
the two elements have the same generation, the basic

Godunov scheme is used.

Each cell is defined by its nine nodes. The

variables of interest (height and momentum) are

stored at the center (node 8). Fluxes are stored at the

edge nodes (nodes 4–7). To preserve the conservation

of mass and momentum, flux balance has to be

imposed at each cell interface. The mathematical

relations to be satisfied are Fp=0.5
(Fm1+Fm2) for

case (a), and Fm=0.5
(Fp1+Fp2) for a case (b). The

indicatorsm and p refer to the bminusQ or bplusQ side of
the interface being investigated, the indices b1Q and b2Q
denote the sons of the element with higher generation

number, and F is the numerical fluxes. The above

relations may be regarded as integral balance of fluxes

over appropriate regions of the linear interface.

The second situation when separate treatment of

fluxes has to be done is at the interface between two

processors. For the current element, if the interface is

on the positive_x_side, only the flux for the current

element are calculated, because the neighbors sharing

the interface are ghost cells. Similarity, if the interface

is on the negative_x_side, only the fluxes on that side

of the current element are being updated.

4.3. Code integration in a geographic information

system (GIS)

Because we deal in our applications with real-world

coordinates, we link our new simulation code dynam-

ically to a geographic information system (GIS) that

provides geospatial database. Integration of the simu-

lation code with GIS functionality and GIS data layers

requires acquiring appropriate data sources at a

resolution compatible with the resolution of our

computational grid. Most digital elevation models

(DEMs) available use a pixel or raster-based grid data

format instead of the computational mesh (or lattice in

GIS terminology) used in our modeling approach. This

requires that the grid-based elevation data must then be

extracted in a way to accurately represent the computa-

tional grid potentially at a different resolution (see Fig.

3). Note that in the case of comparable resolutions, GIS

data must be appropriately interpolated to avoid

Fig. 2. Example of ghost cells for a two subdomain partition.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 9
creating mathematical artifacts that do not represent the

existing topography in the real world.

We decide to use the open-source GIS GRASS

(http://www3.baylor.edu/grass/, 2003) that allows a

tight coupling between model and GIS code to

prepare the initial DEM model input at a particular

resolution, and while the model is running, additional

elevation mesh points are requested by the simulation

at various resolutions derived from the DEM. Ele-

vation and curvature data are interpolated by the

model code based on the demands of the dynamically

created computational grid at various resolutions.

Because the grid is adapted during the simulation,

the computational resolution changes. As new grid

points are added to the simulation, new elevation data
Fig. 3. GIS and computational grids at different resolutions. In the case of

to avoid creating false artifacts.
must be obtained from the GIS system. The other

option of deriving elevation and curvature data by

interpolating data the from the new computational

grid’s parent cell degrades the solution quality.

Integration of geographic information systems (GIS),

such as GRASS (http://www3.baylor.edu/grass/,

2003), with our codes must be accomplished such

that our simulations can query the GIS database for

accurate topographic information for the newly

introduced grid cell. Towards this goal, we have

developed a set of interface routines to interactively

obtain elevation, slope, and curvature information

from GRASS databases.

If the GIS resolution is much finer than the desired

computational resolution, then the GIS data can be
comparable resolutions, GIS data must be appropriately interpolated

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2110
obtained by a simple look-up process of the GIS grid

cell that contains the point for which new data are being

requested. However, if the GIS resolution is compara-

ble or smaller, then this process can lead to artificial

features. Because of this, the GIS data must be

interpolated carefully using interpolation techniques

over the computational cell area. In an early imple-

mentation, we used the piecewise constant approach to

obtaining elevation data, even for cases in which the

GIS resolution was comparable to the computational

grid. This resulted in the generation of bfalseQ artifacts
i.e. small zones in which the GIS created artificial steep

features. Such artifacts can greatly corrupt the solution.

A more careful study of the effect of postprocessing

GIS data is currently underway.

4.4. Parallel adaptive simulations

While adaptive methods can increase the accuracy

of a simulation without major increases in computing

power, many physical problems still cannot be

accurately simulated on single-processor machines.

To increase the available computing power, multiple-

processor machines need to be used. In order to get

the best simulation accuracy, the simulation code must

run efficiently on all of these machines, especially

those with distributed memory. Good data manage-

ment and problem decomposition are critical for an

adaptive code to run efficiently on such distributed

memory-parallel machines.

4.4.1. AFEAPI

An extended version of the finite element data

management system, Adaptive Finite Elements Appli-

cation Programmers Interface (AFEAPI; Patra et al.,

2002; Laszloffy et al., 2000; Long, 2001), was used in

this code. Originally, AFEAPI was developed for

statistic, hp adaptive finite element simulations of

linear elastostatistics. For this work, AFEAPI was

modified to handle a dynamic, h adaptive finite

difference simulation to the DFE equations presented

earlier. AFEAPI greatly simplified the task of manag-

ing adaptivity in a parallel environment.

Adding, deleting, and modifying mesh objects

while maintaining mesh consistency in a parallel

environment, dynamically adjusting mesh partition-

ing, and migrating appropriate cell objects to

maintain load balance during the simulation are
among the many cumbersome tasks handled by

AFEAPI. Some of the principal ideas of AFEAPI

are using Space Filling Curves (SFC; see below) for

the cell ordering, a hash table data structure for

accessing cell data, and dynamic load balancing. The

advantages of using the SFC is that there is support

for hierarchical adaptive mesh refinement, fast key

generation, key uniqueness, a global address space,

and memory locality of data based on physical

locality of mesh objects (i.e., the cells). The locality

properties serve to improve cache performance in

hierarchical memory systems.

4.4.2. Partitioning with space filling curves

The main goals of load balancing are to assign work

evenly to a set of processors and to minimize the

communication between processors. For grid-based

computations, an easy way to obtain such a work

distribution is to partition the mesh and assign work

associated with different pieces to different processors.

If the computational load changes as the computation

proceeds, as is the case for h-adaptive methods, the

load balancing must be performed in conjunction with

the computation. This is called dynamic load balanc-

ing. The major constraints of dynamic load balancing

are minimizing the time to calculate a division of the

work andminimizing the amount of objects that need to

be moved between processors. There are currently

many different load-balancing algorithms and libraries

available (see Hendrickson and Devine, 2000 for a

review). In our work here, a variant of the Space Filling

Curves partitioning algorithm originally introduced by

Salomon and Warren (1993).

4.4.3. Space-filling curves

Space-filling curves are continuous functions that

map a bounded one-dimensional interval R onto a

bounded n-dimensional space Un, hn: RYUn. Sagan’s

(1994) recent text provides a very readable review of

their salient features. Themapping hn is continuous and

surjective but not injective (onto but not one-to-one). In

finite precision computations though, this mapping

becomes bijective and a point xi a Un actually

represents a dsmallT hypercube in the n-dimensional

space. The size of the hypercube is determined by the

recursion level of the SFC and the size of the original n-

dimensional domain. If the original n-dimensional

domain is mapped into a unit n-dimensional hypercube

Fig. 4. Finite precision SFC passing through the points of a two-

dimensional domain.

Fig. 5. SFC partitions of two-dimensional FEM grid that has been h

adapted.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 11
as done in Edwards and Browne (1996), then

Un=[0,1]
n and the lengths of the sides of the hypercube

will be 2�r, where r is the recursion level of the finite

precision SFC. The top half of Fig. 4 shows how the

SFC traverses through a square for the first three levels

of recursion. This is done by calculating the inverse

mappings of points in Un of the SFC, ni=hn
�1(xi), xi a

Un and then sorting the points ni aR. If a set of points

are given in Un, an SFC can be calculated which

traverses through all of them. The result of this property

is the preservation of the spatial locality across the

mapping. The bottom half of Fig. 4 shows how the SFC

traverses through points of a nonuniform grid.

4.4.4. SFC partitioning

The key idea of the SFC partitioning algorithm is

that the task of partitioning objects in an n-dimen-

sional space is easily accomplished by ordering the

objects using an appropriate index space and then

partitioning the index space. SFCs provide an easy

technique for the ordering of objects which are located

in an n-dimensional space. The typical scheme for

calculating SFC partitions is shown in Table 1 and is

illustrated in Fig. 5.
Table 1

Space filling curve partitioning algorithm

1. Find a representative coordinate xi a Un for each object i.

2. Calculate a bounding box Bn in Un such that UnoBn and a

mapping g: BnY[0,1]n.

3. Calculate the location in R for each object by hn
�1 o g(xi).

4. Sort all of the objects according to their location in R.

5. Calculate the location of the cuts in R that will produce the

desired partitioning.
Fig. 6. Triggered refinement as a result of the one-irregularity rule
R can be viewed as a weighted line itself, because the

objects have already been associated with points on

the line. To calculate cuts along the weighted line,

most SFC partitioning algorithms perform some type

of k-way cut calculation to find the cuts between

processors in Step 5 of Table 1 of the algorithm.
.

Fig. 7. Allowed and disallowed refinement at a subdomain interface.

Fig. 8. Experimental setup and example runs. (A) Schematic diagram traced from image showing positions of masonite planes and sandpile

masses. Angle of plane was measured with a digital construction level. (B) Starting of experiment at 44.38 with mass of 425.3 g. Image taken

0.23 s after start of experiment. (C) Final position of sandpile from experiment at 31.88 with mass of 425.11 g. Image taken 3.13 s after start of

experiment. (D) Final position of sandpile from experiment at 44.38 (as B). Image taken 1.26 s after start of experiment. Note shorter time to

final position and more distal final position than in (C). Final sandpile is outlined in yellow for visualization.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2112

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 13
4.4.5. Refinement and partitioning

Recall our description of the bone-irregularityQ rule
for mesh refinement. This can be quite difficult to

implement in a parallel code, because refinement in

one subdomain can trigger refinement on other

subdomain (see Fig. 6). Because of this, the current

refinement scheme does not allow triggered refine-

ment in other subdomains. This is shown in Fig. 7.

Thus, in the implementation of the refinement

process, we reject any refinements that will induce

such a pattern of refinement. While this does have an

impact on the scheme, in practice the deletrious

effects are negligible, because upon the next reparti-

tioning, such cells move away from the bno-refineQ
zone and are then successfully refined.
Fig. 9. Simulated and experimental observations of the front and tai

of a pile of granular material sliding down a flat inclined plane a

38.58. The propagation of the experimental and numerical flows

matches well with a time offset of 0.3 s added to the numerical flow

(A) Propagation in the downslope direction as indicated by the

position of flow head and tail. (B) Propagation in the cross-slope

direction as indicated by the width and the extension and elongation

of the pile as indicated by the difference in head and tail positions
5. Verification and validation

We describe here an extensive program of verifi-

cation and validation of the TITAN2D code. Verifi-

cation of complex codes like TITAN2D essentially

implies the testing of the code for consistency. We

have conducted a series of numerical tests to check for

consistent behavior. Principal among these have been:

(a) checks for convergence of the solution as the grid

parameters dx, dyY0; (b) comparison of solutions

from adapted grids to solutions from very fine

nonadaptive grids; and (c) reasonable checks that

expected symmetries, and other physically expected

behavior are observed.

For validation, we will employ a series of compar-

isons of the simulation output to tabletop experiments

and field observations. Our primary laboratory scale

tests were a series of sand flows down a flat inclined

plane. The sand is allowed to flow down and spread.

We describe now the setup and different runs.

5.1. Validation: inclined plane experiments

5.1.1. Experiments

Laboratory experiments were conducted using

sand flows released on a masonite plane (Fig. 8A).

In many respects, the experimental setup was similar

to that used by Poliquen and Forterre (2002). The

masonite plane measured 190
60 cm and consisted

of two parts. The first section was tilted at angles of

23.98–44.38 with an adjustable mount. Particles were
released instantaneously on the upper part of this

section either from a smaller hemispherical container

or a larger cylindrical container. The tilted section was

joined to a second section, which dipped from 18 to 28
downstream. The mass of particles released from the

hemispherical container was ~43 g, while that

released from the cylindrical container was ~425 g.

Particles were playground sand grains sieved so that

only the 2–2.5u (177–250 Am) fraction was used. The

particles were dyed blue with clothing dye to aid in

visualization. The basal friction angle for this material

was tested by a number of methods to lie at 188–298.
l

t

.

.

Fig. 10. Simulated and experimental observations of the width of a pile of granular material sliding down a flat plane at 38.58. Effect of grid
adaptivity is illustrated in the plot. Here, an adaptive grid with three levels of local refinement on a base grid 100
200 uniform cells yields

solutions comparable to a grid with 800
1600 cells, while the nonadaptive grid solutions are further away. Experimental observations are close

to the computed values from either the fine resolution grids or the adaptive grid in the later half of the flow. Early on there is significant

difference between the experimental data and simulations.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2114
The large variance resulted from differences in the test

methodology. The basal maximum angle of stability

was 368. Both the internal friction angle and the

internal maximum angle of stability were 37.38. The
propagation of the sand was measured by videotaping,

while a horizontal grid was projected onto the plane to
Fig. 11. Shape of the pile after 2.4 s of simulations of flow down an inc

refinement on the left and a nonadapted grid on the right. The y-spread is
aid in visualization. Video frames were then grabbed

with a digital frame grabber, and the sand propagation

was measured directly from the frames by measuring

the lateral spreading, as well as the advance of the

head and tail of the flowing mass. Because of the

difficulty in ascertaining the edge of the flow during
lined plane starting with a 200
100 grid and three levels of local

much smaller for the coarse grid.

Fig. 12. Shape of the pile after 2.3 s of the simulation of flow down an inclined plane starting with a 200
100 grid and three levels of local

refinement on the left and a nonadapted grid with a 800
400 grid on the right.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 15
time steps when the material was thinly spread and

because of geometrical distortions, the error in the

measurements of positions of the flow is estimated to

range from 1 to ~2.5 cm.

A typical experiment proceeded as follows (Fig.

8B–D). The video camera was started and the

operator then filled the starting container with sand

as the base was placed flush to the test plane. The

container was removed with a smooth motion to

avoid undue disturbance of the particles. The test

mass then began propagation downslope, with the

head initially moving at a noticeably greater speed

than the tail, which appeared to be stationary for a
Fig. 13. Simulated flow on Little Tahoma Peak-simulated runout v
short time. The sand grains spread laterally as well

as downstream so that the mass rapidly attained

teardrop shape. With time, this teardrop shape

elongated and spread laterally, although the tail did

ultimately propagate downstream.

Once on the lower test section, the particles in the

head began to deposit in a teardrop shape that was

noticeably less elongated in the downstream direction

than the actively propagating mass. The final dispo-

sition of the mass resembled a conic section with its

base on the lower test section and its apex at some

height on the upper test section that depended on the

slope angle of the upper test section. The only
s. field observations (red outline; see Sheridan et al., 2004).

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2116
exception to this geometry was in experiments at

angles within the range of the basal friction angle, in

which case the mass was arrested on the upper test

section.

5.1.2. Simulations

The runout distance is one of the most fundamental

parameters measured for granular natural flows. It is

closely related to the so-called Heim coefficient, the

ratio of the fall height to the runout distance for the

center of mass of the pile. The final position of the
Fig. 14. (A) Aerial view of the southwest flank of Colima volcano from S

pyroclastic flows. (B) Initial position of the mass used in the simulation. (

steps, the simulated mass in approximately at the positions shown by (CW
flow front varies little with slope angle because it is

controlled by the momentum of the flow as it reaches

the base of the first slope section. The final position of

the flow tail then controls the runout distance of the

center of mass. Fig. 9A shows that the simulations are

able to predict the position of the flow tail well over a

range of slope inclinations. Fig. 9A and B show

sample comparisons of the flow simulations with the

experiments for the case of a ~425 g mass and slopes

of 38.58. The plots show good quantitative compar-

ison of the evolving pile shape, speed, and runout
aucedo et al. (in review). The lighter areas are deposits of the 1991

C) The simulated mass propagates downslope. (D) After 1000 time

) and (CC) in (A).

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 17
distance if an offset of +0.3 s is applied to the

numerical results. We hypothesize that this offset is

necessary because of unmodeled internal rearrange-

ment of the packing of the particles that comprise the

pile following withdrawal of the container, friction

angle measurement errors, and an error in timing of

the beginning of the experiment that must be V�0.1 s.

We investigate next the effect of grid adaptivity on the

accuracy of the simulations. Fig. 10 shows that the

computed width of the pile in the later half is well

resolved and correlates well with experiments using

either an adaptive grid (three levels of local refinement

on a base grid of 100
200 cells) or a fine grid

(800
1600 cells). The convergence of the adapted

grid solution to that from a fine grid indicates that the

code is consistent. The poor correlation early on

indicates that the modeling is inaccurate in that flow

regime. Figs. 11 and 12 show typical results at

approximately the same time (2.4 s after the start of

the flow) using a coarse mesh of 200
100 grid, the

same initial coarse mesh and three levels of adaptivity

and a fine mesh of 800
 400 grid points. We noticed

that all expected symmetries about a midplane are

indeed observed. Secondly, the solution (especially

the difficult to capture spread in the y direction) from

the adaptive mesh and the fine mesh are quite similar,

while the solution from the coarse mesh is quite

different from the fine mesh. This indicates that
Fig. 15. Plot shows the load imbalance for ea
our adaptivity formulation and implementation are

consistent.

The testing of the model against these experiment

proved to be more difficult than that against the

deposits of natural flows (next subsection). On the

open plane, because of the low gradient in pile height

near the flow edge, it is critical to carefully define the

flow edge. Flows on the open plane also possess

obvious geometric characteristics that required careful

definition of the coordinate system before model and

data matched.

5.2. Validation: tests on real terrain

We include here two sample simulations on Little

Tahoma Peak, Mt. Rainier, Washington and Volcan de

Colima, Mexico. Fig. 13 shows the simulation for the

rockfall avalanche on Little Tahoma Peak of 1963 with

an overlay showing the extent of the deposit from field

observations. Additional details of these calculations

can be found in Sheridan et al. (2004).

Fig. 14 shows calculations on Volcan de Colima,

Mexico, for comparison with deposits. There were

thousands of rockfalls and numerous block and ash

flows during the 1991–1999 eruptions of Colima

Volcano, with volumes ranging from a few cubic

meters to 106 m3. All flows followed channels or

relative topographic lows, propagating for distances
ch processor when using 64 processors.

Fig. 16. Plot shows the number of cells updated per second per

processor as a function of the number of processors.

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2118
up to 4 km. For a given flow volume, the

TITAN2D model approximated flow path and

runout distances well, but had difficulty resolving

cross-slope extent in areas where the natural flow

was confined within channel walls that were poorly

resolved on the DEM (Rupp et al., 2003).

In both cases, the simulations provide reasonable

comparisons with field observations consisting of

flow paths and area covered by the deposit. Detailed

matching of deposit thickness and position, and

observations of flow speed are subjects for future

work.
6. Code characterization

In addition to the verification and validation we

described in the previous section, we have carried out

a number of tests to demonstrate the computational

efficiency of the code. The primary goal of this testing

is to demonstrate that our codes are able to use the

parallel computing hardware efficiently, and the

complex procedures for implementing parallel adap-

tivity do not impose an undue performance penalty.
Fig. 17. Output of the TITAN2D model after 1400 time steps for granula

simulate block and ash flows that have occurred at the volcano during the

flows were initiated at the top of the volcano where the growth of unstable

The largest of the flows in nature have propagated to the hill on which th

conditions can result in significant errors in estimates of propagation dista

angle 308, bed friction angle 208; (C) internal friction angle 308, bed fricti

mass twice that of (A); (E) internal friction angle 168, bed friction angle 158
150 m.
6.1. Scalability and load balance

A simple measure of parallel code performance is

the load balance, i.e., the problem decomposition.

Ideally, each process is assigned an identical amount

of work. However, in practice, we deviate from this,

and one or more processors are often very lightly

loaded. For the TITAN2D code, we measured this

load distribution by counting the actual number of cell

updates assigned to each processor i, L(i) as:

L ið Þ ¼ Xi � Xavg

Xavg

ð29Þ

where Xi is the number of cell updates assigned to i,

and Xavg is the average. Fig. 15 plots the load

imbalances associated with different processors. We

observe that the imbalances are extremely small.

In the next series of tests to characterize the

performance of the code, we examine its scalability.

Scalability of a parallel code attempts to measure the

efficiency with which the algorithm/code is able to use

additional processors as the problem size is increased.

On distributed memory-parallel computers, the prob-

lem must be first decomposed into a series of

subproblems, which can be solved concurrently, and

the results must then be synchronised. The tasks of

problem decomposition and synchronisation of results

are thus additional overheads incurred by the paralle-

lization. These costs also usually increase with the

number of processors. Scalable parallel codes are able

to control this increase—thus the amount of useful

work done per processor per second remains relatively

constant. Fig. 16 shows the number of cells updated per

second per processor of a PC cluster on 4, 8, 16, 32, and

64 processors for a test run simulating flows on little

Tahoma peak. As more processors are added, finer

grids are employed maintaining the ratio of (50
50

grid cells per processors in the initial grid).We note that

the count of cells updated per second per processor

appears to be stable and does not degrade significantly
r flows on the southwest flank of Colima volcano, Mexico. Flows

most recent eruptive episode, which began in 1991. The simulated

domes in the natural case results in initiation of block and ash flows.

e simulated flows stop. Small changes in parameter values or initial

nce. (A) Position of the initial pile for (B)–(E); (B) internal friction

on angle 258; (D) internal friction angle 308, bed friction angle 208,
; and (F) same as (C) but the center of the initial pile has been moved

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 19

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–2120
with increasing numbers of processors. Tests on other

simulations of other sites have yielded similar results.

Our analysis indicates that the slight degradation in

performance is largely due to the shared access to a

single GIS data set and the lower scalability of the

parallel input–output system available on the commod-

ity PC cluster-type computer used here.

6.2. Parameter studies

The simulations require us to provide parametric

inputs for (a) the bed and internal friction angles, (b)

location, extent, and height of initial mass, and (c)

terrain topography.

In a recent study, Rupp et al. (2003) studied the

effect of parameter variations on simulations using the

TITAN2D code. Fig. 17 shows the results of these

calculations. These results indicate that the outputs of

these calculations are critically dependent on the

choice of initial conditions and to a lesser extent

dependent on the surface and the material character-

ization (the friction angles). Such insights resulting

from even these preliminary calculations can be

invaluable in guiding future field studies and hazard

risk planning.
7. Conclusions and future work

In this paper, we have described the successful de-

velopment of a new tool for simulation of geophysical

mass flows. Such a tool can be used by geoscientists

and public safety planners seeking to estimate the

hazard risk from such flows. In associated efforts, we

are also developing visualization and collaboration

tools to make our systems widely accessible.

We have attempted to use the state-of-the-art

computational methodologies, including parallel

computing and adaptive schemes, to obtain high-

quality numerical solutions. We have also integrated

the simulation tool with geographic information

systems to obtain accurate topological data and

convenient access to other geospatial features (e.g.,

location of roads) that motivates specific simulations.

Our software is publicly available, and we have

created versions that run efficiently on inexpensive

desktop personal computers and also on very high-

end supercomputers. The use of grid adaptivity (and
the resulting computation efficiency) enables us to

run fairly accurate calculations on inexpensive desk-

top machines. For the best calculations though, we

need to use high-end distributed memory-parallel

computers.

Future efforts on the development of the TITAN2D

tool will take two directions. The first will be enhance

the quality of the model to enable it to deal with

fluidized mixtures as opposed to the dry avalanches

modeled now. As described in the parameter studies,

the outputs of the simulations are dependent on

choices of several parameters. Because parameters

for field studies from the digital elevation maps to the

initial conditions and estimates of friction angles have

a large variability, we will explore systematic

approaches to quantify this uncertainty.
Acknowledgements

This work was supported by NSF Grants

ITR0121254. Computational resources were provided

by the Center for Computational Research, University

at Buffalo.
References

Berger, M., Collela, P., 1989. Local adaptive mesh refinement for

shock hydrodynamics. J. Comput. Phys. 82, 64–84.

Davis, S.F., 1998. Simplified second order Godunov type methods.

SIAM J. Sci. Statist. Comput. 9, 445–473.

Demkowicz, L., Oden, J.T., Rachowicz, W., Hardy, O., 1989.

Toward a universal h–p adaptive finite element strategy: Part I.

Constrained approximation and data structure. Comput. Meth-

ods Appl. Mech. Eng. 77, 9–112.

Denlinger, R.P., Iverson, R.M., 2001. Flow of variably

fluidized granular material across three-dimensional terrain:

2. Numerical predictions and experimental tests. J. Geophys.

Res. 106, 533–566.

Edwards, H.C., Browne, J.C., 1996. Scalable dynamic distributed

array and its application to a parallel hp adaptive finite element

code. Proc. POOMA ’96 Santa Fe, New Mexico, http://www.

acl.lanl.gov/Pooma96.

Gray, J.N.M.T., 1997. Granular avalanches on complex topography.

In: Fleck, N.A., Cocks, A.C.F. (Eds.), Proceedings of IUTAM

Symposium on Mechanics of Granular and Porous Materials.

Kluwer Academic Publishers, pp. 275–286.

Hendrickson, B., Devine, K., 2000. Dynamic load balancing in

computational mechanics. Comput. Methods Appl. Mech. Eng.

184, 485–500.

http://www.acl.lanl.gov/Pooma96

A.K. Patra et al. / Journal of Volcanology and Geothermal Research 139 (2005) 1–21 21
Hirsch, C., 1990. Numerical Computation of Internal and External

Flows. John Wiley and Sons.

http:// www3.baylor.edu/grass/ at Baylor University accessed April,

2003.

Hutter, K., Siegel, M., Savage, S.B., Nohguchi, Y., 1993. Two

dimensional spreading of a granular avalanche down an inclined

plane: Part 1. Theory. Acta Mech. 100, 37–68.

Iverson, R.M., Denlinger, R.P., 2001. Flow of variably fluidized

granular material across three-dimensional terrain: 1. Coulomb

mixture theory. J. Geophys. Res. 106, 537–552.

Laszloffy, A., Long, J., Patra, A.K., 2000. Simple data management,

scheduling and solution strategies for managing the irregu-

larities in parallel adaptive hp finite element simulations.

Parallel Comput. 26, 1765–1788.

LeVeque, R.J., 1992. Numerical Methods for Conservation Laws.

Birkhauser Verlag.

Long, J., 2001. Integrated Data Management and Dynamic Load

Balancing for hp and Generalized FEM, PhD dissertation,

Mechanical and Aerospace Engineering Dept., University at

Buffalo.

Patra, A., Laszloffy, A., Long, J., 2002. Data structures and

load balancing for parallel adaptive hp finite element

methods to appear in. Computers and Mathematics with

Applications.

Poliquen, O., Forterre, Y., 2002. Friction laws for defense granular

flows: application to the motion of a mass down a rough

inclined plane. J. Fluid Mech. 453, 133–151.
Rankine, W.J.M., 1857. On a stability of loose earth. Philos. Trans.

R. Soc. Lond. 147, 9–27.

Rupp, B., Bursik, M., Patra, A., Pitman, B., Bauer, A., Nichita, C.,

Saucedo, R., Macias, J., 2003. Simulation of pyroclastic flows

of Colima Volacano, Mexico, using the TITAN2D program.

European Geophysical Society 2003, Geophysical Research

Abstract vol. 5. , pp. 12857.

Sagan, H., 1994. Space Filling Curves. Springer Verlag, Heidelberg.

Salomon, J., Warren, M., 1993. Parallel Hashed Oct-Trees.

Proceedings of Supercomputing ’93, Portland, Oregon, Nov.

Saucedo, R., Macias, J., Bursik, M., in review. Pyroclastic flow

deposits of the 1991 eruption of Colima Volcano. Mexico, Bull.

Volcanology.

Savage, S.B., Hutter, K., 1989. The motion of a finite mass of

granular material down a rough incline. J.F.M. 199, 177–215.

Sheridan, M.F., Stinton, A.J., Patra, A., Pitman, E.B., Bauer,

A., Nichita, C.C., 2004. Evaluating TITAN2D mass-flow

model using 1963 Little Tahoma Peak avalanches. Mount

Rainier Washington. J. Volcanol. Geotherm. Res. 139, 89–102

(this issue).

Toro, E.F., 1997. Riemann Solvers and Numerical Methods for

Fluid Dynamics. Springer-Verlag.

http://%20www3.baylor.edu/grass/

	Parallel adaptive numerical simulation of dry avalanches over natural terrain
	Introduction
	Governing equations
	Models
	Basic equations and boundary conditions
	Depth-averaged theory

	Solution techniques
	First-order scheme
	Second-order description

	Computational methodology
	Adaptive methods
	Error indicators
	Local refinement of mesh
	Unrefinement of a mesh
	Ghost cells

	Adaptive Godunov algorithm description
	Code integration in a geographic information system (GIS)
	Parallel adaptive simulations
	AFEAPI
	Partitioning with space filling curves
	Space-filling curves
	SFC partitioning
	Refinement and partitioning

	Verification and validation
	Validation: inclined plane experiments
	Experiments
	Simulations

	Validation: tests on real terrain

	Code characterization
	Scalability and load balance
	Parameter studies

	Conclusions and future work
	Acknowledgements
	References

