VOLGEO-05768; No of Pages 11

Journal of Volcanology and Geothermal Research xxx (2016) XXX-XXx

Contents lists available at ScienceDirect

Journal of Volcanology and Geothermal Research

journal homepage: www.elsevier.com/locate/jvolgeores

Sensitivity analysis of a one-dimensional model of a volcanic plume with
particle fallout and collapse behavior

S. Pouget, M. Bursik *, P. Singla, T. Singh

University at Buffalo, Buffalo, NY, USA

ARTICLE INFO ABSTRACT

Article history:

Received 3 October 2015

Received in revised form 17 February 2016
Accepted 19 February 2016

Available online xxxx

We run a volcanic plume model with uncertain boundary conditions and entrainment related model parameters.
Output variables tested for their sensitivity to the inputs are total rise height, and mass flux of particles into the
umbrella cloud or downwind plume. Boundary or source conditions are vent radius, initial velocity, grain size
mean and grain size standard deviation. Model parameters are entrainment rate, o, wind entrainment rate, (3,
and wind speed.

Five sensitivity metrics were considered. Three of these are calculated for each given point in the input parameter
space, by perturbing the input variable around fixed points. Two global sensitivity measures quantify the impact
on the output of the input over its entire uncertain domain.

We find that vent radius and initial speed have a much more profound effect on both outputs than does total
grain size distribution. Plume rise height and particle mass flux are sensitive to the entrainment parameters, o
and f3, but these parameters are not of greater importance than the wind speed. This suggests that while efforts
to better characterize entrainment parameters through laboratory experiments is important, similar efforts
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should be made to collect appropriate meteorological data for the region near the site of the eruption.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

One-dimensional, numerical eruption column or plume models
(Costa et al., this volume) have found a use in estimation of the amount
of ash emplaced into the atmosphere at an estimated plume height
(e.g., Folch et al., 2008). The nature of the sensitivity of the output ash
loading or plume height to the variables and parameters that are incor-
porated in a given plume model is however poorly known (Scollo et al.,
2008; Degruyter and Bonadonna, 2012; Woodhouse et al., 2015, this
volume). One expects, based on previous experience, that plume height
and atmospheric loading should primarily be functions of grain size,
vent radius, and plume velocity (Sparks et al.,, 1997).

The eruption plume model discussed in the present contribution
was introduced by Bursik (2001). As part of a larger program of im-
provement and recasting, in the present contribution, it has been mod-
ified in a number of ways. These changes were precipitated by the work
presented in Bursik et al. (2012) and Stefanescu et al. (2014). The
changes to the original plume model are as follows. The model:

1. Has been modified to provide input to PUFF or HYSPLIT (Bursik et al.,
2013).
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2. Can use radiosonde or NWP data directly to get atmospheric
parameters.

3. Can estimate atmosphere above the top of radiosonde or NWP data
used as input.

4. Can be run in stochastic mode with uncertain inputs of volcanic
boundary conditions as well as entrainment parameters and wind
speed.

5. Can be run in inverse mode to estimate source parameters.

6. Can simulate collapse behavior, to allow fountain height to be re-
corded. In these cases, there is no injection of pyroclasts from the
vent into the atmosphere.

7. Includes a refined model for plume rise height calculation.

Other changes to the model not included in the present version - to
keep it as close to the model of Bursik (2001) as possible - are the
following:

1. Modules for water have been added (Glaze and Baloga, 1996).

2. Double-precision and adaptive step-size now used.

3. Previously little-documented, optional, umbrella cloud and fallout
modules (Bursik et al., 2009) are available.

The model was originally unnamed, but was later called BENT
(Bursik et al., 2009). The present incarnation is called “puffin,” to
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emphasize the fact that it can be used to provided input to PUFF or
HYSPLIT (Bursik et al., 2013).

We concentrate herein on discussing results from running the model
with uncertain boundary conditions and entrainment related parame-
ters in a full sensitivity analysis. The output variables to be tested for
their sensitivity to the inputs are total rise height, Hy, and mass flux of
particles into the umbrella cloud or downwind plume, 11, |y,, which
are responsible for the atmospheric loading. First we introduce the cur-
rent set of equations of motion, and then we introduce the methods and
metrics to be used in the analysis. Finally, we present a consideration of
the meaning of the results.

2. Model of plume motion

The deterministic plume model was presented previously (Bursik,
2001), and is an integral, one-dimensional model for plumes that en-
train mass and momentum from the wind (Hewett et al., 1971;
Wright, 1984). The model includes a spectrum of pyroclasts of different
grain sizes and settling speeds that move at the same speed as the
plume gases until falling out from the plume margins. Once falling
they can be re-entrained. It is a trajectory model, and therefore well-
suited for adaptation to and coordination with meteorological models
and data. The following presentation follows that in (Bursik, 2001),
but has been explicitly modified to highlight the variables and parame-
ters that are now treated as stochastic.

2.1. Coordinate system

In the following analysis, the downwind distance is x, z is up, and s
represents the distance along the plume axis from the vent. Theta, 9,
is the inclination of the plume centerline to the horizon. The equations
expressing the relationship between (x,z) and (s,%) are then given by:

X = [ cos 9ds, (1)

z = [sin¥ds. (2)

2.2. Equations of plume motion

In plumes that are significantly affected by the wind, the entrain-
ment speed, U, must be a function of wind speed, V(§), now a sto-
chastic variable given as a function of the unit random variable, §,
as well as axial plume speed, U. A number of wind entrainment rela-
tionships have been investigated (see Table 2.1 in Wright, 1984, for
an older summary). Reasonable correspondence between one such
entrainment relation and experimental data has been obtained
(Hewett et al., 1971):

Ue = a(§)|U—V(§) cosd| + B(§)|V(§) sind, 3)

where «(§), the radial entrainment parameter and 3(§), the wind-
entrainment parameter, are both now stochastic - but constant -
parameters. Thus, we now have three stochastic model parameters:
V(§),a(§),B(§). With this knowledge, henceforth the § will be
dropped from the description of these variables. Eq. (3) assumes
that the magnitude of the horizontal wind component is much larger
than the vertical component. The practical meaning behind V, o and
B being stochastic is that numerous, carefully selected values for
these will be substituted into the equations of motion. Among
other things, this will allow for exploration of the range of values
for the entrainment parameters from the literature. Some of these
different values may arise from near-vent phenomena, where
plume density may be five times that of the ambient atmosphere
(Sparks et al., 1997), and plume decompression occurs in the crater

(Woods and Bower, 1995), or from a Richardson number depen-
dence (Wang and Law, 2002; Kaminski and Tait, 2005).
For mass conservation (continuity) of the plume, we have:

d N dm;
= (nbsz) = 21p,bU. + ;d—s' (4)

where b is the characteristic plume radius, p is the bulk plume density,
Pq is the ambient atmospheric bulk density, and M; represents the
mass flux of pyroclasts of size fraction i within the plume. The first
term on the right-hand side represents the gain in mass flux by entrain-
ment of air, whereas the second term represents the loss of mass flux by
fallout of pyroclasts.

The conservation of mass flux of particles for multiple grain size frac-
tions, M;, is given by (Ernst et al., 1996):

dMi _ _ pws
ds

oM (5)

where p is a probability that an individual particle will fall from the
plume and ws is the settling speed of a particle in the given size class
(in the current model, i=1 to 19 for pyroclasts between 10 and —8 &
at 1 — & intervals). The probability of fallout, p, is a function of plume
geometry and re-entrainment (Bursik, 2001), and should have an ap-
proximately constant value of ~0.23 with no re-entrainment, based on
the geometry of plume margins in a quiescent atmosphere (Ernst
et al., 1996). Because of the strong inflow towards the plume caused
by entrainment, pyroclasts <~10 cm are, however, re-entrained at
lower heights in a plume after falling from greater heights. Fitting a
curve through experimental results for a vertical plume in a quiescent
ambient Ernst et al. (1996), a reasonable, purely heuristic, form of the
re-entrainment function, f; is:

6 —1
0.78 } )
FS’/ZHO' //A/Wsi '

where F, is the specific thermal flux at the vent, Fo= b3U,C, oTo, and o
is the specific momentum flux at the vent, given by 1y = b3U3, and set-
tling speeds of pyroclasts, w;s ; is calculated as a function of height,
given atmospheric density and viscosity. With wind, Eq. (3) can be at
best a poor approximation, as the pyroclasts on the downwind side
would often not be re-entrained, given that the net horizontal wind
speed can be away from the plume. However, at low wind speed, a
zeroth-order assumption - made herein - is that the enhanced fallout
on the downwind side is balanced by an enhanced re-entrainment on
the upwind side.
The equation for conservation of axial momentum is:

f_0.43(1+

dg(nbsz2> =nb’Apg sin ¢
s (7)

+ Vcos 19% (nbzpu),

where the first term on the right-hand side represents the change in
momentum caused by the component of gravitational acceleration,
Apg = (p, — p)g, in the axial direction, and the second term represents
entrainment of momentum from wind. Note that this equation is mod-
ified from that in Bursik (2001), by taking out an explicit dependence on
dM;/ds, which because the effect of loss of pyroclasts on momentum flux
is already counted in the second term on the RHS, resulted in a doubling
of the effect of pyroclast fallout on plume dynamics. The conservation of
the radial component of momentum is given by:

(nbzpuz) (2—1: = mb*Apg cos¥—V sinﬁ% (nbsz), (8)
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where the left-hand side represents the change in % caused by the en-
trainment of momentum at an angle to the plume axis by both gravity
(first term on right-hand side) and wind (second term). Note that the
small-angle approximation is made for d+. The conservation of specific
enthalpy is given by:

d

& (nbszCVT> = 2mbUp,CoTa—mb*pUg siny

N au. 9
+GTY %.
i=1

The first term on the right-hand side is the energy added by the en-
trainment of air, the second term is the change in thermal energy by
conversion to/from gravitational potential energy, and the third term
is the loss of heat by sedimentation of pyroclasts. C, is the bulk heat
capacity (all at constant pressure) of the material in the plume, T is its
temperature, C, and T, are the heat capacity and temperature respec-
tively of the air, and G, is the heat capacity of the pyroclasts. The mate-
rial in the plume is assumed initially to contain pyroclasts and water
vapor, which is diluted by entrainment of air to concentration, n=
n(s), as a fraction of gas in the plume. All bulk properties are calculated
as the weighted mean of the values for the separate phases, following
Woods and Bursik (1991).

To calculate the concentration of pyroclasts at any radial position
within the plume, we rely on the observation, frequently corroborated
in experiment, that the time-mean concentration of any passive tracer
or particle fraction in a plume in a quiescent ambient has a Gaussian
profile (Morton et al., 1956). Thus the concentration as a function of ra-
dial distance, C;(r), within a volcanic plume follows:

M; r2
Ci(r) = —2 I 10
=525 10

This may be a particularly poor assumption for bent-over or weak
plumes in high-speed ambient fluids.

The steady equations of motion are subject to the boundary
conditions at the vent, denoted by a null subscript:

U=Uo(§)
b =Dbo(€)
T'=To (11
Ny = Nyo

Mdy = Mdgo(§)
O¢ = Ogo (§)

where n,, is the mass fraction of water in the plume, Md ¢, is the median
grain size, in & units, and oy, is the standard deviation of the grain size
distribution. All the above, except n,, are prognostic variables, solved
for by a fourth-order Runge-Kutta routine with Egs. (4) through (9).
Time-mean radial concentration profiles are calculated with Eq. (10).
Intrinsic plume material properties and n,, are diagnostic, updated at
each time step according to mass-averaging relations discussed else-
where (Woods and Bursik, 1991; Sparks et al., 1997). Thus, in total we
will explore four stochastic boundary or source conditions, as well as
three stochastic model parameters (Eq. (11)).

2.3. Atmosphere

The present version of the model can use theoretical atmospheric
profiles to test ideal cases of wind speed or other parameters, but can
also use as input radiosonde or numerical weather prediction (NWP)
data. For the present exercise, radiosonde data were given (Costa
et al., this volume. However, for the sensitivity analysis, we seek to
test the effect of wind speed and to compare that with the effect of
the entrainment parameters. For this reason, we have used a wind
speed that is constant with height. For other atmospheric parameters,

we use standard values for the ICAN atmosphere, following Bursik
(2001).

24. Rise height and mass flux estimation

The sensitivity of two output variables of interest is of concern: the
total rise height, Hr, and the mass flux of pyroclasts into the umbrella
cloud, estimated as the mass flux of pyroclasts at the neutral buoyancy
height, 1, |n,. The neutral buoyancy height or level, Hg, is assumed to
occur where p=p, and d(p — p,)/ds> 0. Total rise height is found asHy =
Hp + U;|n,%/2g, i.e., the top is defined by the momentum overshoot of
the neutral buoyancy height, assuming no entrainment above Hg.

3. Model sensitivity

The main purpose of the sensitivity analysis of the plume model is to
identify the relative importance of the uncertain parameters and source
variables in controlling the most critical output variables: rise height, Hr,
and atmospheric mass loading, D x 1ip|x,, where D is eruption duration,
which is not a variable in a steady plume model. The uncertain variables
of interest are divided into the two categories, model parameters and
boundary or source conditions, and are given in Table 1. To study the sen-
sitivity of the plume model output to the uncertain parameters and
boundary values of the source variables, five metrics were considered.
Three of these are calculated for each given point in the input parameter
space.

3.1. Pearson coefficient

The Pearson correlation coefficient, pxy, is @ measure of the linear
correlation (dependence) between two random variables, X and Y,
and is widely used as a measure of the degree of linear dependence be-
tween them. It is defined as the covariance of the two variables divided
by the product of their standard deviations:

_ E[X =) (Y —piy)]
Pxy = T ooy (12)
where E denotes expectation, tix and Ly denote the mean of variables X
and Y, respectively, over all numerical experiments, ox and oy denote
the standard deviation. These variables are defined as usual:

Hx = EX], iy = EIY],0% = E[(X—p1)?], 0F = E[(Y =)’ (13)

Accordingly, pxy lies between +1 and — 1 where 1 is total positive
correlation, 0 is no correlation, and — 1 is total negative correlation.

3.2. Distance correlation
It is well known that the Pearson correlation coefficient can be zero

even for dependent variables. This usually happens whenever there is a
symmetry in the relation between two variables. To address this

Table 1

Stochastic model parameters and source conditions.
Model parameter Value range PDF
Entrainment parameter, 0.05-0.2 Uniform
Wind entrainment parameter, 3 0.05-1.0 Uniform
Wind speed, V, m/s 0-30 Uniform
Source condition Value range PDF
Vent radius, by, m 50-300 Uniform
Velocity at vent, Uy, m/s 50-300 Uniform
Median grain size, Mdq,, P units —5-5 Uniform
Oy, O units 1-5 Uniform
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particular deficiency of the Pearson coefficient, the distance correlation
was introduced almost a decade ago (Székely et al., 2007). The distance
correlation is zero if and only if the variables are statistically indepen-
dent. It is derived from the distance variance, distance standard devia-
tion and distance covariance, which substitute for the ordinary
moments in the definition of the Pearson correlation coefficient.

To define the distance correlation, we start with the definition of
pairwise distance. If (X;,Y;) withi=1,2, ... ,N denote N samples of ran-
dom variables (X,Y), then all pairwise distances are defined as:

aj = [Xi—Xj|.bj = |Y;i=Yj|,i,j=1,2,...,N. (14)

Now, the distance covariance is defined as:
1 N
dogy = — > AiBj, (15)
N" 3

where A and Bj; are defined as:
Aj = ay—E[a;]—E[a ] + Ea], (16)

where E[g; ] denotes the mean of ith row of the matrix a;; whereas E[a,]
denotes the mean of the jth column of the matrix a;;. E[a] is the mean of
the matrix a;;. The notation is similar for the b;; values. It should be no-
ticed that all rows and all columns of both A; j and B; ; sum to zero.
Now, the distance correlation (dpyy) is defined by replacing ordinary
statistical moments with distance moments, i.e.,

do,
ded()'y ’

dpxy = (17)
where doy = (doxx)'/? and doy = (doyy)'/2. The distance correlation,
dpxy, replaces the usual covariances of pxy with local covariances. Thus
y(x) could be any more complex function, such as one symmetric
about the y-axis, yet would show positive correlation between X and
Y. Moreover, unlike pxy, dpxy lies between zero and unity.

3.3. Linear coefficient

The third metric corresponds to finding the best linear dependence
between the variables X and Y over the whole uncertain domain.
Spanos (1981) suggested the technique of statistical linearization, by
which the variable Y, a given nonlinear function of the random variable,
X, can be approximated as a linear function of X:

Y=mX+c, (18)

where the unknown coefficients, m and c are computed by minimizing
the following error index:

J = min / (Y=mX—c*p(X)dX = E[(Y—mX—c)’],

_ E[YX|—EIXJELY)
E[xz} —EXIEX] (19)
E{XZ]E[Y]—E[XY}E[X]
c=EY—mX] =
E[xz} —E[X|EX]

and p(X) is the pdf of X. The minimization process leads to the following
closed-form expressions for the unknown coefficients:

m = E[YX],c = E[Y]. (20)

It should be noted that m can be interpreted as the gradient of Y with
respect to X over the whole uncertain space.

In addition to the three metrics discussed above, Global Sensitivity
measures have been increasingly used in geophysical applications

(Chu-Agor et al,, 2011; van Griensven et al., 2006; Pappenberger et al.,
2008; Scollo et al., 2008; Woodhouse et al., 2015). As opposed to tradi-
tional sensitivity measures, which are determined by perturbing the
input variable around fixed points, global sensitivity analysis aims to
quantify the impact on the output of the input over its entire
uncertain domain. Two global sensitivity metrics are considered,
namely: (1) Main Effect and (2) Total Effect, which are described as
follows.

3.4. Main effect

Global sensitivity analysis permits the evaluation of the contribu-
tions of uncertain inputs X=x in characterizing the uncertainty in the
output Y=y. Factor Prioritization is an approach in which the goal is to
rank the variables based on the fraction of the output variance that is re-
duced when a specific value is assigned to the input variable.

The uncertainty in the output is parameterized by the variance when
the remaining uncertain input parameters are varied across their do-
main. The importance of a variable, i.e., the sensitivity of the output to
its value, can be gauged by the reduction in the variance of the output
when the uncertainty in that variable is eliminated. A specific value is
assigned to the variable x; and the mean of the output over the rest of
the uncertain variables is calculated. This value is given by the condi-
tional mean:

Ex, (YIxi = ;). (21)

where x; is the vector x without the parameter x;. Since the constant x; is
not known and can take values which span a range, the variance of the
conditional mean is determined over all possible values of x; and is given
by the equation:

Vx, (Ef(i (Y|Xi = XT)) (22)

This measure is called the Main Effect of x; on y and the larger its
value, the larger is its influence on the output, which implies that the
output variable is highly sensitive to x;. The sensitivity is quantified as:

_ Vi (Ex (YIxi = X))

S 1 E—

(23)

which lies in the range of zero to one, and is often referred to in the lit-
erature as the first-order effect (Saltelli et al., 2004).

Fig. 1. Schematic of specially chosen axes according to CUT methodology in 3-D space. o,
principal axes. ¢, conjugate axes.
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3.5. Total effect

A second measure to gauge the importance of the variable x; over its
range of uncertainty is given by the contribution to the variance of the
output of x;, including all effects resulting from its interactions with
other uncertain variable of any order.

The expected value of the output when the rest of the uncertain var-
iables are defined is given as:

Eq (Y% = %), (24)
where ¥; is the vector x without the parameter x;. Since the constant x;
can take values which span a domain, the variance of the conditional
mean is calculated as:

Vi, (Ex (YR = 7). (25)
which has been shown to be the sum of the impact of all the terms

excluding x; (Saltelli et al., 2006), and consequently, the total effect is
defined as:

Sy = 1=Vy (Ex (Y% = X)). (26)

x10*

0 160 260 360 400
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-10 -5 0 5 10
A Mean Grain Size

-5 . . .
0 100 200 300 400
Vent Radius
10 X 10*
€ 51
£
>
2 of
-5 . . .
-10 -5 0 5 10

B Mean Grain Size

This term is called the total effect of x; on Y since it includes all terms
in the development of any order that do not include x;.
Using the law of total variance:

V(Y) = V(E(Y[x))) + E(V(Y[X:)), (27)

the total effect of the parameter x; can also be determined by evaluating:

Sy = Ex, (Vi (Y[%i = X)). (28)

3.6. Computation

A major challenge in computing the metrics is the efficient computa-
tion of various expectation integrals. Conventionally, Monte Carlo (MC)
methods are used for this purpose. While MC methods generally suffer
from slow convergence rates, the common sampling strategies used to
alleviate this problem (e.g., Markov Chain MC) cannot be parallelized ef-
fectively. An alternative to random sampling is a quadrature scheme,
such as the popular Gaussian quadrature, which involves carefully
choosing deterministic points to reproduce exactly the integrals for
polynomials, i.e.,, moments of the density function. Gaussian quadrature

x10*

0 1 60 260 360 400
Vent velocity

-5 . . .
0 100 200 300 400
Vent velocity
10 % 10*
5 L
0 L
-5
0 6

2 4
Std. Dev.

Fig. 4. Hy as a function of source parameters. A) a=0.1890, 3=0.1170, w=27.9m/s (high entrainment and wind speed). B) «=0.0606, 3=0.1170, w=2.12 m/s (low entrainment and
wind speed). Blue stars, individual runs; red circles, mean for all runs at fixed value of indicated parameter (x-axis).
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schemes exactly reproduce the integral of a polynomial of degree 2M —
1 with M™ points in a m-dimension space. The sparse-grid quadrature
schemes, and in particular Smolyak quadrature, select a subset of the
tensor product of the one-dimensional quadrature points using a recur-
sive algorithm as outlined in (Gerstner and Griebel, 1998). Thus the
resulting scheme has fewer points than the equivalent Gaussian quad-
rature rule, but at the cost of introducing negative weights (Gerstner
and Griebel, 1998). Fortunately, the Gaussian quadrature rule is not
minimal for m>2, and there exist quadrature rules requiring fewer
points in high dimensions (Stroud and Secrest, 1966). As volcanic
plume models, of which the one-dimensional ones are currently inex-
pensive to evaluate by design, become more expensive, the move to
quadrature schemes becomes increasingly important.

There is no guarantee that collocation or quadrature methods will
better capture the moments of an output variable, Y. Collocation and
quadrature schemes are based upon the premises that one can increase
the accuracy of moment calculations in Y-space by capturing more mo-
ments in X-space, for example, let us assume that Y={f(X), hence E[Y] =
E[f(X)]. If one does the Taylor series expansion of f(X), then E[Y] is a
function of the moments of X, hence capturing higher order moments
of X leads to more accuracy in capturing moments of Y.

In this work, a non-product quadrature rule known as the Conjugate
Unscented Transformation (CUT) (Adurthi et al., 2013a) has been
exploited to compute the various expectation integrals. Rather than
using tensor products as in Gauss quadrature, the CUT approach judi-
ciously selects special structures to extract symmetric quadrature points
constrained to lie on specially defined axes. The CUT algorithm has been
benchmarked in earlier papers against other approaches for conver-
gence of the moments (Adurthi et al., 2013a, 2013b, 2012; Adurthi
and Singla, 2015). Madankan et al. (2014) specifically tested conver-
gence for the present plume model coupled to the ash dispersion
model, PUFF.

These specially designed axes are derivatives of the principal axes, o,
defined as the n orthogonal axes, centered at the origin, that are orthog-
onal to the pdfs of the input variables (Fig. 1). In an n — dimensional
Cartesian space, the m conjugate axis with m<n, are defined as the direc-
tions that are constructed from all the combinations, including the sign
permutations, of the set of principal axes, taken m at a time. The set of m
conjugate axes, ¢, determine points, ¢{™:
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In n —dimensional Cartesian space, the m-scaled conjugate axes are
defined as the set of directions constructed from all combinations, in-
cluding sign permutations, of the set of principal axes such that in
every combination exactly one principal axis is scaled by a parameter,
h. The set of m scaled conjugate axes, s™, determine points, sj":

s € {(xho, + On,... £ 0N, )[{N1,Ny, ....Nu} CD} i = 1,2,...,n2'"("m>.

Fig. 1a shows a perspective view of the first octant of the Cartesian
space for a 3 — dimensional case. It should be mentioned that all eight
octants in the 3 — dimensional case are symmetrical.

For each cubature point, two unknown variables, a weight w; and a
scaling parameter r; are assigned. The moment constraint equations
for the desired order are derived in terms of unknown variables r; and
w;. Because of the symmetries of cubature points, the odd-order mo-
ment constraint equations are automatically satisfied, so the w; and r;
are found by solving just the even-order equations. Different sets of
cubature points can be found, depending on m and the order of the mo-
ment constraint equations.

These new sets of so-called sigma points are guaranteed to ex-
actly evaluate expectation integrals involving polynomial func-
tions with significantly fewer points. More details about the CUT
methodology and its comparison with conventional quadrature
rules can be found in (Adurthi et al., 2013a,b, 2012; Adurthi and
Singla, 2015).

The CUT quadrature approach uses a small number of points, rela-
tive to Gauss quadrature, to compute an integral with the same accura-
cy. Fig. 2 represents the number of quadrature points required, for 8th
order accuracy, by different quadrature schemes (CUT, Gauss-Legendre,
Clenshaw-Curtis and Sparse Grid), for a uniform random variable, as a
function of the dimensionality of the random variable. From the figure,
it is clear that the growth in the number of quadrature points with di-
mension is much smaller for the CUT method, especially compared to
the Gauss-Legendre and Clenshaw-Curtis approaches. The CUT method
requires fewer than half the number of quadrature points for the
sparse-grid Smolyak approach. As one specific example, 161 CUT quad-
rature points are required to satisfy 8th-order moments in 4-
dimensional space, but 6561 points are required for Clenshaw-Curtis
quadrature, 625 for Gauss-Legendre quadrature, and 385 for sparse-
grid quadrature.
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Fig. 6. Global sensitivity metrics for source conditions. Each run number refers to computational run using different CUT point (set of values of variables being tested for sensitivity).

A) Main effect. B) Total effect.
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While the computation of the Pearson correlation coefficient, the lin-
ear correlation coefficient and the global sensitivity measures can be
carried out with the CUT quadrature points (as they need only the infor-
mation about the statistical moments), the computation of the distance
correlation metric requires statistical samples of input and output vari-
ables, i.e., Xand Y. A 5*"-order polynomial surrogate for the plume model
is developed to derive a large number of Monte Carlo samples for the
output variables, corresponding to various MC samples of input vari-
ables. The surrogate is thus an analytic, polynomial expression that sub-
stitutes for the numerical integration of the plume model to describe the
values of specified output variables given ranges of potential values (un-
certainty) in a set of input variables. The model output, Y, can be written
as a linear combination of polynomial basis functions, ¢;(§), orthogonal
to the density function for the input variable, €. These can be computed
by Gram-Schmidt orthogonalization, and span the space of the random
input variables §=[X;,... X"

Vi— E[Y(§)¢y(6)] =12,

Eld (€ 6)] s (29)

N
Y(E) =) Ykgk(®)
k=0

These expectation integrals can once again be computed with the
help of CUT methodology. In Bursik et al. (2012); Madankan et al.
(2014), the CUT methodology, in conjunction with a 5th-order polyno-
mial surrogate model, is successfully applied to compute a probabilistic,
spatio-temporal estimate of ash presence during the April, 2010 erup-
tion of Eyjafjallajokull, Iceland.

4. Results and discussion

Given the uncertain ranges of various parameters (Table 1), 161 8th-
order CUT points were generated for the four boundary conditions, and
59 8th-order CUT points were generated for the three model parame-
ters. For each set of variables, the sensitivity metrics illustrating the cor-
relation between Hy or 1|y, and the inputs were computed directly
from the CUT points. The only exception is the distance correlation coef-
ficient, which is computed with the help of 50,000 MC runs generated
from a 5"-order polynomial surrogate model, the coefficients of which
are generated from the CUT points.

Fig. 3A shows the plot of the sensitivity metrics for Hras a function of
the 59 CUT runs of the plume model, each run with different, but fixed
values of the model parameters, while the source conditions are varied.
No matter the value of the model parameters, all metrics concur in the
parameters most and least correlated to plume rise height, Hr. Irrespec-
tive of the value of the model parameters, the ash particle mean size is
the variable least correlated to Hy, while the Pearson coefficient indi-
cates Hy is most highly correlated to the source velocity, followed by
vent radius. This is in accordance with the physics of the model, as the
product of the source velocity and squared vent radius represents the
total mass flux from the vent, which controls Hy. The more consistent
dependence of rise height on velocity than on radius in the Pearson
and Linear coefficients results from the fact that for a given fixed veloc-
ity, an increase in radius can result in column collapse, i.e., lowering
rather than raising of Hr Sparks et al. (1997), while at a fixed vent radius,
an increase in velocity never results in collapse, i.e., Hr is more nearly
linearly dependent on source velocity. The more complex functional de-
pendence on vent radius is reflected in the Distance coefficient, which
almost always has a higher value for vent radius than for velocity.

Fig. 3B shows the plot of the sensitivity metrics corresponding to Hy
and the three model parameters, as a function of 161 different CUT runs
for different, but fixed values of the source conditions. Each sample thus
represents the sensitivity of the model rise height to the given plume
parameter. The entrainment parameter « correlates most highly to Hr,
while 3 and wind speed are equally important. The effect of 3 is almost
the same as the effect of wind speed, through the relation expressed in
Eq. (3). With a few exceptions, due perhaps to unexplored nonlinearity,

the Pearson and Linear coefficients display a negative dependence for all
model parameters, while the Distance coefficient shows a greater sensi-
tivity to o than to 3 and wind speed. The negative dependence results
from the decrease in the neutral buoyancy level (Hp) with increasing
entrainment - the plume is driven towards the atmospheric density
more rapidly. The Distance coefficient shows that this dependence of
Hp is more correlated with ¢, rather than 8 and wind speed, due to
other effects on plume dynamics. For example, wind speed directly af-
fects momentum flux (Egs. (7), (8)), making additional accelerations
possible as Hp is approached.

Fig. 4A and B show the outputs of the emulator runs for specific
values of model parameters. These are emulator runs, not simulations
(actual runs of the numerical model), so it is possible for negative
heights to be generated. Nevertheless, the moments of the distributions
of the runs are accurate (Madankan et al., 2014; Adurthi and Singla,
2015). When the model parameters take on lower values (Fig. 4B),
rise height increases due to slower atmospheric mixing and increase
in Hp. Column collapse is more common with increased vent radius
and decreased initial velocity, as expected. Rise height is not sensitive
to particle size over the range of values investigated herein, as the
range does not extend to coarser particle sizes associated with
fountaining (Woods and Bursik, 1991).

Fig. 5A shows the sensitivity metrics corresponding to particle flux at
the neutral buoyancy level, ri1p|,, and four source conditions, as a func-
tion of 59 CUT runs on the model parameters. Similarly, Fig. 5B shows
the sensitivity metrics corresponding to particle flux and three model
parameters, as a function of the 161 CUT runs for the source conditions.
Once again, in considering the uncertain ranges for the model parame-
ters, the vent radius and source velocity are highly correlated to the par-
ticle flux. All three model parameters are almost equally and positively
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Fig. 7. Box and whisker plots for source conditions. A) Main effect. B) Total effect.
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correlated to the particle flux for most values of the eruption source
conditions, but for some values, the Pearson coefficient shows high neg-
ative correlation for a. At these values, the Distance coefficient shows
weaker correlation and the Linear coefficient suggests no correlation.
For other values, the Distance coefficient shows a greater degree of cor-
relation. At these values, the Pearson and Linear coefficients sometimes
show a greater positive correlation. Exploration of such occasional
model nonlinearities that cause these unusual relations for o are beyond
the scope of the present work.

The global sensitivity measures confirm the relative importance of
the source parameters on the primary output considered: plume height,
Hr. Fig. 6A and B illustrate the variation of the relative importance of the
four source parameters for the 59 CUT runs of model parameters. Fig. 7A
and B are box and whisker charts which illustrate the spread of the Main
and Total effect metrics for the 59 CUT runs. Box and whisker plots are
used to display a statistical population without making any assumption
of the distribution. The box part of the plot contains three horizontal
lines. The middle corresponds to the median, the bottom and top lines
correspond to the 25th and 75th percentiles, respectively. The whiskers
represent the bounds of the data excluding data points considered as
outliers, which are represented individually. The source velocity is

shown to be the most important variable, with a small spread, indicat-
ing that irrespective of the region of the uncertain source parameter
space sampled, its importance was consistent. The global measures con-
firm the complex functional relation between the vent radius and
plume height, with a much greater spread in effect than source velocity.
The effects of particle mean and standard deviation on output Hr are
lower than source velocity or vent radius, with little variability, particu-
larly, in the mean grain size.

The main effect and the total effect on Hr as a function of the uncer-
tain inputs «, 3 and wind speed, are calculated for 161 runs that corre-
spond to different realizations of the model parameter values. Across
the set of volcanic model parameters, both the main effect (Fig. 8A)
and the total effect (Fig. 8B) chart the characteristic that the contribu-
tions of all of the uncertain parameters are about the same. The box
and whisker charts (Fig. 9A and B) illustrate the same assessment,
i.e., the impact of the variables ¢, 3 and wind speed over their uncertain
ranges is nearly the same. In contrast to the global sensitivity analysis
for the volcanic source conditions, where the initial velocity and vent ra-
dius were clearly the dominant variables, accounting for a majority of the
variability in the output, there is little to distinguish the overall impact of
a, 3and wind speed on the output. The center of the distribution of values
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for the Main effect is noticeably lower for « than for the other two param-
eters, but the outliers and 25 — 75% range overlap considerably.

5. Conclusions

In the present contribution, we have investigated the effects of the
main source conditions (vent radius, initial velocity and grain size distri-
bution) on rise height and particle mass flux at Hp, into the umbrella
cloud of a volcanic plume. For the plume model investigated herein,
vent radius and initial speed have a much more profound effect on
both outputs than does total grain size distribution. Plume rise height
and particle mass flux at Hp are sensitive to the entrainment parameters,
a and B3, but these values are not of greater importance than correctly
characterizing the wind speed. This suggests that while efforts to better
characterize entrainment parameters through laboratory experiments
are important, similar effort should be made to collect accurate meteo-
rological data near the site of the eruption.
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