Probabilistic Hazard Map Emulator Overview

UB

February 15, 2016

Probabilistic Hazard Map Emulator

February 15, 2016 1 / 21

- Probabilistic Hazard Map Emulator Construction Overview
- Probabilistic Hazard Map Emulator Construction Workflow

Hazard Map Emulation Motivation and Challenges

- Analyze hazards over a terrain over a period time following a premonitory event
- Goal for this current study is to produce a hazard map that displays the probability of a flow depth reaching critical height
- Currently there are not many procedures in place for obtaining field data from a premonitory event within hours of the event
- Goal is to support on-line access and dissemination of the the probability of hazard map workflow through the VHub platform

- Need a computer implementation of mathematical model
- Direct implementation of computer model is very costly
- Need adaptively designed approximations for the computer model
- Need to handle uncertainty in the input parameters to the computer model

Simulator Parameter Uncertainty

- In real world problems there is some degree of uncertainty
- Simulators: Deterministic computer models
- Emulators: Statistical models of simulators
- Focus on parameter uncertainty: The uncertainty of the simulator output due to uncertainty in its inputs
- One way to to quantify the uncertainty is to use sampling which requires multiple runs of the simulator
- Each run of TITAN2D takes 20 minutes on a single processor so Monte Carlo type sampling is considered too expensive

TITAN2D Simulator

- TITAN2D Simulator provides the deterministic computer model
- Geophysical flow computer model developed by the Geophysical Mass Flow group at UB
- Simulates granular flows such as debris avalanches and landslides over digital elevation models (DEMs) which are 3D representation of a terrain's surface
- TITAN2D combines numerical simulations of a flow with digital elevation data of natural terrain supported through a Geographical Information System (GIS) interface such as GRASS
- Employs adaptive mesh refinement

TITAN2D Governing "Shallow Water" Equations

• Hyperbolic system of equations solved using a parallel adaptive mesh

•
$$U_t + F(U)_x + G(U)_y = S(U)$$

- U is a vector of conserved state variables
- F is a vector of mass and momentum fluxes in the x-direction
- G is a vector of mass and momentum fluxes in the v-direction
- ► S is a vector of driving and dissipative force terms
- System is solved numerically for flow depth and a depth-averaged velocity at every grid point and time sten (UB)7 / 21

- The Bayes Linear Emulator is a very important step in the construction of the probabilistic hazard map emulator
- The emulator attempts to fit a piecewise polynomial through the already available data
- The emulator estimates the means and variances of the inputs for the uncertain parameters using Bayesian Linear Regression

Bayesian Approach

- The full Bayesian approach requires knowledge about a joint probability distribution
- Estimates some unknown stochastic process represented by a set of data
- Employs Bayes Rule

$$P(X|Y) = \frac{P(X)P(Y|X)}{P(Y)}$$

• In some cases the joint probability distribution is not known or may be arbitrarily specified

Bayes Linear Method I - Adjusting Beliefs: Concepts and Properties

- Belief specification
- $C = (X_1, X_2, ...)$ Random variables from which statements of uncertainty are made
- For each $X_i, X_j \in C$ specify
 - $E(X_i)$ Belief as to the value of X_i
 - ► Var(X_i) Degree of Confidence in the belief
 - Cov(X_i, X_j) Judgment on the relationship between the quantities

Bayes Linear Method I - Adjusting Beliefs: Concepts and Properties Con't

- Belief structure
- Construct linear space $\langle C \rangle$ consisting of all linear combinations of random quantities

$$h_0 X_o + h_1 X_{i_1} + ... + h_k X_{i_k}$$

- Belief structure allows restriction by choice of base to any linear subspace of this collection
- Probabilistic hazard map emulator is constructed over $\langle {\cal C} \rangle$

Bayes Linear Method I - Adjusting Beliefs: Concepts and Properties Con't

- $D = \{D_1...D_k\}$ Observed members of C
- $B = \{B_1...B_r\}$ Uncertain members of C
- Adjusted Expectation, Var, and Cov for $X \in B$

•
$$E(X|D) = \sum_{i=0}^{k} h_i D_i$$

- That minimizes $E((X \sum_{i=0}^{k} h_i D_i)^2) \Rightarrow$
- $E(X|D) = E(X) + Cov(X, D)Var(D)^{-1}(D E(D))$
- $\lor VAR(X|D) = E((X E(X|D)^2))$
- COV(X, Y|D) = E((X E(X|D))(Y E(Y|D)))

Piecewise Linear Ensemble of Emulators

- Multi mini-emulator formulation guarantees a positive definite matrix
- Correlation for using existing methods would have millions of elements in each direction
- Using an ensemble of mini-emulators
- Mini-emulators correlation matrices on the order of hundred per side vice one million per side
- One mini-emulator for each of the samples
- Piecewise linearly interpolate mini-emulators

Tessellations

- Tessellation of sample points is performed to generate a set of triangles whose nodes are samples, uses Delaunay triangularization
- A mini-emulator centered about each sample is constructed using only those samples in the neighborhood of its central sample
- Mini-emulators adjusted mean and variance are calculated for arbitrary re-sample points
- Adjusted means and variances of the min-emulators combined in a weighted sum where sum of weights is 1
- Aggregate mini-emulators into a maco-emulator and re-sample the macro-emulator to produce the probability of a hazard map (PHM)
 (DB)
 (Probabilistic Hazard Map Emulator
 (Probabilistic Hazard Map Emulator

Tessellation Example

Figure : Example Tessellation

3

Ensemble Example

February 15, 2016 16 / 21

3

Probabilistic Hazard Map Emulator Workflow Diagram

Figure Probabilistic Hazard Map Emulator Workflow

(UB)

Probabilistic Hazard Map Emulator

February 15, 2016

17 / 21

Example Probabilistic Hazard Map

Probability that a flow will exceed 0.2 m in depth as a function of position on Mount Fuji, given uncertainty in the DEM and the volume and bed friction input parameters. Titan simulation run time 60 seconds
(UB) Probabilistic Hazard Map Emulator

Example Probabilistic Hazard Map

• Standard deviation in the estimate that the flow will exceed 0.2 m in depth

(UB)

February 15, 2016 19 / 21

Pegasus Workflow Management System

- Allows management of multi-step computational tasks
- Supports on-line access and dissemination of probability of hazard map emulations through the VHUB platform
- Interfacing with Pegasus via python script
- Allows automation of the probability of hazard map emulation workflow

Predictive Simulation and Model based Hazard Maps of Geophysical Mass Flow (Dissertation), Keith R. Dalbey

Bayes Linear Method I, Adjusting Beliefs: Concepts and Properties, Micheal Goldstein