

Jose L. Palma, University at Buffalo PASI Workshop, January 20II

Volcanic hazards

Why do we need models?

I. Predict flow path, runout, speed- before and during eruptions
2. Understand processes, important effects
3. Help interpret past eruptions

Using models to build hazard maps

Figure 1.2: Left: This is a hazard map generated by Sheridan et al[121] for Pico de Orizaba, Mexico. Middle: This is a map of deposits and flow outlines from Energy Cone, FLOW2D, and FLOW3D simulations used by Sheridan et $\mathrm{al}[122]$ to construct the hazard map on the left. Right: This is a probability of flow depth $\geq 1[\mathrm{~m}]$ that PCQ predicts for an event when all volumes between 5×10^{7} and $4 \times 10^{8}\left[\mathrm{~m}^{3}\right]$ are considered equally likely; the third sub-figure was generated from an ensemble of Titan2D simulations and also appears in Sheridan et al[124].

Energy balance

$$
E=(U+K)+\left(C_{I}-D_{I}\right)-F
$$

$(U+K)=E_{M}$
$\left(C_{I}-D_{I}\right)=I$

差USGS

H/L: path-averaged deceleration

$$
m g H=\frac{1}{2} m v^{2}+m A L_{p}
$$

$$
(v=0) \Rightarrow \frac{H}{L_{p}}=\frac{A}{g}
$$

H/Lp represents the path-averaged deceleration that causes the loss of mechanical energy of the flow

H/L: rigid body

$F r=\mu N=\mu m g \cos \theta$

$$
\mu=\tan \theta=\frac{H}{L}
$$

(Coulomb friction model)

H/L: real data

\square	Merapi 2006 DCPFs	\triangleleft Soufriere Hills 10/1997 FCPFs
\square	Merapi 2006 OBPFs	\triangleright Soufriere Hills 1997 Surges
\diamond Merapi 1998 DCPFs	∇ Soufriere Hills 1997 Derived Flows	
+ Unzen 1991 DCPFs	\square Small-volume pyroclastic flows	
\circ Colima 1998 DCPFs	【 Large-volume pyroclastic flows	
\diamond Colima 1999 FCPFs	X Debris flows	
\triangle Soufriere Hills 1996/1997 DCPFs	O Cold-debris avalanches	

H / L vs volume

Fig. 2. Log(volume) versus $\log (H / L)$, where H is the height descended and L is the runout distance. (a) Volcanic debris avalanches ($v \mathrm{~d} a$). (b) Nonvolcanic debris avalanches (nvda). (c) Pyroclastic flows ($p f$). (d) Deposit fields for all three types of deposits.

From Hayashi and Self 1992

Energy line

© Brooks/Cole, Cengage Learning

H / L and energy line/cone

$H / L=0.26$

$H / L=0.18$

Sheridan et al. (2004). Pyroclastic Flow Hazard at Volcán Citlaltépetl. Natural Hazards

Segmentation of the path

$$
m g d H=\frac{1}{2} m d v^{2}+m A d x
$$

$$
\frac{1}{2} \frac{d v^{2}}{d x}=g \sin \theta-A
$$

$$
(d H / d x=\sin \theta)
$$

Voellmy-Salm-Gubler model

(A simple model for flowing snow avalanches)

$$
\frac{A}{g}=\mu \cos \theta+\frac{v^{2}}{\xi h}
$$

h flow depth
μ Coulomb friction coefficient: 0.3 (small avalanches) - 0.155 (large avalanches)
ξ turbulent friction coefficient [m/s²]: 400 (confined) - 1000 (wide open slope)

FLOW3D

Sheridan et al. (2004). Natural Hazards

Flow spreading and deposition

$$
\begin{aligned}
L_{p} & \approx\left(H^{2}+L_{c m}^{2}\right)^{1 / 2} \\
H_{c m} & =H-\frac{1}{2} \frac{V}{S}=H-\frac{1}{2} \bar{h}
\end{aligned}
$$

V volume
S planimetric area

$$
L_{s}=\left(\frac{S}{k_{s}}\right)^{1 / 2}
$$

\bar{h} average depth
k_{s} is a shape factor: $4 c$ for a rectangle, πc for an ellipse (c is the ratio between axes)

Flow spreading and deposition

X. Liu. Size of debris flow deposition: model experiment approach. Environmental Geology, 98(2):70-77, 1995.

Flow spreading and deposition

X. Liu. Size of debris flow deposition: model experiment approach. Environmental Geology, 98(2):70-77, 1995.

Flow spreading and deposition

$$
L_{s}=\left(\frac{S}{k_{s}}\right)^{1 / 2}
$$

k_{s} is a shape factor: $4 c$ for a rectangle, πc for an ellipse (c is the ratio between axes)

$$
L_{s}=\left(\frac{V}{k_{v}}\right)^{1 / 3}
$$

k_{v} is a shape factor related to the volume of the flow

$$
S=\frac{k_{s}}{k_{v}^{2 / 3}} V^{2 / 3}
$$

Flow spreading and deposition

Calder et al. (I999). GRL

LAHARZ

$$
\begin{gathered}
A=c_{1} V^{2 / 3} \\
Q_{\max }^{*}=\frac{Q_{\max }}{A_{\max } \sqrt{g R}}, \begin{array}{l}
\text { dimensionless peak } \\
\text { discharge }
\end{array} \\
T^{*}=\frac{T}{\sqrt{A_{\max }} / \sqrt{g R}} \cdot \begin{array}{l}
\text { dimensionless lahar } \\
\text { duration at cross section }
\end{array} \\
c_{l}=\left(K Q_{\max }^{*} T^{*}\right)^{-2 / 3} \\
K \text { dimensionless parameter related } \\
\text { to lahar hydrograph }
\end{gathered}
$$

$$
B=c_{2} V^{2 / 3} \quad c_{2}=\varepsilon^{-2 / 3} \quad \varepsilon=\bar{h} / \sqrt{B} \ll 1
$$

LAHARZ

$$
\begin{aligned}
& A=0.05 V^{2 / 3} \\
& B=200 V^{2 / 3}
\end{aligned}
$$

Iverson et al. (1998). GSA Bulletin

LAHARZ

Iverson et al. (1998). GSA Bulletin
Lahar-inundation hazard map constructed by applying LAHARZ to the Mount Rainier region in western Washington. Topography is depicted by shaded relief. The proximal hazard zone enclosed by the dark line surrounding Mount Rainier is subject to diverse hazards, including lahars.

LAHARZ

Lahar Zonation for Irazu and Turrialba volcanoes, Costa Rica

LAHARZ

Flow Volume, V(\mathbf{m}^{3})

Griswold \& Iverson. USGS Scientific Investigations Report 2007-5276

LAHARZ for block-and-ash PFs

Fig. 1 Scatter plots of inundated valley cross-section area A and planimetric area B as a function of PF volume V, using the data of Table 1. The best fit $\log -\log$ regression lines and 95% confidence intervals for regression, and prediction, are also shown. Red lines show the trend for specified $2 / 3$ slope. a Data from Table 1. b Montserrat data only

For all data: $A=0.05 V^{2 / 3}, B=35 V^{2 / 3}$
For Montserrat data: $A=0.1 V^{2 / 3}, B=40 V^{2 / 3}$
Widiwijayanti et al. (2008). Bull.Volc.

LAHARZ for block-and-ash PFs

Widiwijayanti et al. (2008). Bull.Volc.

Shallow water models

- Valid when the horizontal length scale is much greater than the vertical length scale.
- Derived from depth-integrating the Navier-Stokes equations.
- Vertical velocity gradient is very small and it is discarded (only one vertical level); vertical pressure gradients are nearly hydrostatic.

Shallow water models-TITAN2D

$$
\begin{equation*}
\frac{\partial h}{\partial t}+\frac{\partial}{\partial x}(h u)+\frac{\partial}{\partial y}(h v)=0 \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}(h u)+\frac{\partial}{\partial x}\left(h u^{2}\right)+\frac{\partial}{\partial y}(h u v)=g h \sin \alpha_{x}-\frac{1}{2} k_{\text {actpass }} \frac{\partial}{\partial x}\left(g h^{2} \cos \alpha\right)+\tau_{x} \tag{4}
\end{equation*}
$$

$$
k_{\text {actposs }}=2 \frac{1 \pm\left[1-\cos ^{2} \varphi_{\text {int }}\left(1+\tan ^{2} \varphi_{\text {bed }}\right)^{1 / 2}\right.}{\cos ^{2} \varphi_{\text {int }}}-1
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}(h v)+\frac{\partial}{\partial x}(h v u)+\frac{\partial}{\partial y}\left(h v^{2}\right)=g h \sin \alpha_{y}-\frac{1}{2} k_{a c t p a s s} \frac{\partial}{\partial y}\left(g h^{2} \cos \alpha\right)+\tau_{y} \tag{5}
\end{equation*}
$$

$$
\tau=-p h\left(g \cos \alpha+\frac{\mathbf{u}^{2}}{r}\right) \tan \varphi_{\text {bed }} \frac{u}{\|\mathbf{u}\|}
$$

- TITAN 2D simulation code \rightarrow geophysical mass-flow model developed at the University of Buffalo, USA (Pitman et al., 2003; Patra et al., 2005)
depth-averaged granular-flow model on 3D terrain (Iverson and Denlinger, 2001)
conservation equations for mass (3) and momentum (4 and 5) \rightarrow Coulomb-type friction term at the basal interface
incorporation of topographical data + grid structure (DEM) \rightarrow visualization platform for displaying the flows

Shallow water models-VolcFlow

- VolcFlow, developed at the Laboratoire Magmas et Volcans, Clermont-Ferrand, by Karim Kelfoun, allows the simulation of dense isothermal volcanic flows
- VolcFlow is written in Matlab and runs on Windows

VolcFlow can take into account frictional (with one or two friction angles), viscous, Bingham, Voellmy, etc... as well as more complex, user-defined flow behaviors

The default equation defining the stress in VolcFlow is :

$$
T=\rho h \tan (\text { delta_basal }) \times\left(u^{2} \text { curb }+g \cos \alpha\right)+\text { cohesion }+\frac{d u}{d h} \text { viscosity }+\rho u^{2} \text { coef_u2 }
$$

Shallow water models

Pyroclastic flow simulations with TITAN2D showing flow thickness on main ravines.

Capra et al. (2008).Volcanic hazard zonation of the Nevado de Toluca volcano, México. JVGR

Shallow water models

Capra et al. (2008).Volcanic hazard zonation of the Nevado de Toluca volcano, México. JVGR

Simulation of the Arroyo Grande debris avalanche with (A) FLOW3D and (B) TITAN2D model

Multiphase flow modeling

- PDAC2D, axisymmetric, transient
- Solves for one gas phase coupled to a few solid components (different grain size)

3D multiphase flow modeling

Esposti Ongaro et al. (2008).JVGR

3D multiphase flow modeling

Spatial distribution of pyroclastic particles in the atmosphere 1000s after the start of a sub-Plinian eruption (mass flow = $5.0 \mathrm{e} 07 \mathrm{Kg} / \mathrm{s}$) of Vesuvius. (Image: Menconi et. al. 2005).

End

