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Volcanic hazards



Why do we need models?

1. Predict flow path, runout, speed- before and 
during eruptions

2. Understand processes, important effects

3. Help interpret past eruptions



Using models to build hazard maps

Figure 1.2: Left: This is a hazard map generated by Sheridan et al[121] for

Pico de Orizaba, Mexico. Middle: This is a map of deposits and flow outlines

from Energy Cone, FLOW2D, and FLOW3D simulations used by Sheridan et

al[122] to construct the hazard map on the left. Right: This is a probability of

flow depth ≥ 1 [m] that PCQ predicts for an event when all volumes between

5 × 10
7

and 4 × 10
8 [m3] are considered equally likely; the third sub-figure

was generated from an ensemble of Titan2D simulations and also appears in

Sheridan et al[124].

The geological record can be used by a volcanologist to estimate quantities that param-

eterize past flows, and even probability distributions for these parameters. These distri-

butions can then, at least conceptually, be propagated through a simulator to produce a

spatial map of probability that a hazard criteria will be met within a specified period of

time.

Such a map, in addition to being useful for decision making, would also have an unique

advantage. Since the map could show a continuous gradation of hazard, a line (dividing

a neighborhood into regions that do and do not need to be evacuated) would not appear

as an arbitrary, unreliable prescription of zero/non-zero danger but rather as one sepa-

rating regions where the risk is deemed acceptable/unacceptable by their public officials.

Presenting the information in this context will, hopefully, promote a higher level of con-

fidence in the assessment and increase the likelihood that the people will adhere to the

ruling of their civic leaders.
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Energy balance

E = (U + K) + (CI −DI)− F

(U + K) = EM

(CI −DI) = I
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Figure 2: Schematic diagram of a granular material flowing down a slope, which illustrates the geo-
metrical relationship of the variables used in the thermodynamical (gravity currents) and mechanical
approaches. It also illustrates the difference between L (dashed line) and Lp which represent the
maximum horizontal displacement and the actual length of the path travelled by the centre of mass,
respectively. In addition, there is also a difference in the wayH is measured in previous work, indi-
cated by a dashed line, and the the way it is defined in this work, indicated by a solid line. The body
with a mass m is moving at a velocity v while a frictional force Fr is acting on it in the opposite
direction to the movement. The slope has an angle θ measured from the horizontal.

from which the following expression is obtained:

H

Lp
=

A

g
(4)

The term on the left-hand side in equation 4 is very similar to the well known Heim
coefficient (mean drop gradient or friction coefficient: H/L) (e.g. [17]), but in this
case the run out length of the flow is considered instead of its horizontally travelled
distance. With the preceding reasoning, the H/Lp (HLP) coefficient represents the
path-averaged acceleration ratio that causes the loss of mechanical energy of the
flow.

In the case that erosion or deposition are important processes that occur during
the flow of the granular material, extra parameters must be added to the equation of
the energy balance in order to incorporate the energy interchange:

E = E + meEe + mdEd (5)

where me, Ee, md and Ed are the mass exchange and energy gained or lost by
erosion and deposition, respectively.

2.3 The mechanical approach

Figure 2 shows a conceptual force balance of a block with mass m sliding down a
rough plane by the influence of gravity. In the case of a rigid body, the frictional

mgH =
1
2
mv

2 + mALp

(v = 0)⇒ H

Lp
=

A

g

H/Lp represents the path-averaged deceleration that causes the loss of 
mechanical energy of the flow
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Lp
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(4)

The term on the left-hand side in equation 4 is very similar to the well known Heim
coefficient (mean drop gradient or friction coefficient: H/L) (e.g. [17]), but in this
case the run out length of the flow is considered instead of its horizontally travelled
distance. With the preceding reasoning, the H/Lp (HLP) coefficient represents the
path-averaged acceleration ratio that causes the loss of mechanical energy of the
flow.

In the case that erosion or deposition are important processes that occur during
the flow of the granular material, extra parameters must be added to the equation of
the energy balance in order to incorporate the energy interchange:

E = E + meEe + mdEd (5)

where me, Ee, md and Ed are the mass exchange and energy gained or lost by
erosion and deposition, respectively.

2.3 The mechanical approach

Figure 2 shows a conceptual force balance of a block with mass m sliding down a
rough plane by the influence of gravity. In the case of a rigid body, the frictional

Fr = µN = µmg cos θ

µ = tan θ =
H

L

(Coulomb friction model)



H/L: real data

Figure by Sylvain Charbonnier



H/L vs volume

From Hayashi and Self 1992
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H/L and energy line/cone
216 MICHAEL F. SHERIDAN ET AL.

Figure 3. a and 3b: Maps showing Level I (a) and Level II (b) pyroclastic flow simulations.
UTM coordinates are UL = 659450E, 2126045N, LR = 710647E, 2076017N. Major com-
munications means are: highways in thick dashed lines, secondary paved road in thin dashed
lines, and railways in alternated dotted and dashed lines. For reference the relative population
of the major city Orizaba is 250,000 inhabitants, whereas Coscomatepec is around 25,000
inhabitants.
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Figure 3. a and 3b: Maps showing Level I (a) and Level II (b) pyroclastic flow simulations.
UTM coordinates are UL = 659450E, 2126045N, LR = 710647E, 2076017N. Major com-
munications means are: highways in thick dashed lines, secondary paved road in thin dashed
lines, and railways in alternated dotted and dashed lines. For reference the relative population
of the major city Orizaba is 250,000 inhabitants, whereas Coscomatepec is around 25,000
inhabitants.

H/L = 0.26 H/L = 0.18
Sheridan et al. (2004). Pyroclastic Flow Hazard at Volcán Citlaltépetl. Natural Hazards



Segmentation of the path
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Figure 2: Schematic diagram of a granular material flowing down a slope, which illustrates the geo-
metrical relationship of the variables used in the thermodynamical (gravity currents) and mechanical
approaches. It also illustrates the difference between L (dashed line) and Lp which represent the
maximum horizontal displacement and the actual length of the path travelled by the centre of mass,
respectively. In addition, there is also a difference in the wayH is measured in previous work, indi-
cated by a dashed line, and the the way it is defined in this work, indicated by a solid line. The body
with a mass m is moving at a velocity v while a frictional force Fr is acting on it in the opposite
direction to the movement. The slope has an angle θ measured from the horizontal.

from which the following expression is obtained:

H

Lp
=

A

g
(4)

The term on the left-hand side in equation 4 is very similar to the well known Heim
coefficient (mean drop gradient or friction coefficient: H/L) (e.g. [17]), but in this
case the run out length of the flow is considered instead of its horizontally travelled
distance. With the preceding reasoning, the H/Lp (HLP) coefficient represents the
path-averaged acceleration ratio that causes the loss of mechanical energy of the
flow.

In the case that erosion or deposition are important processes that occur during
the flow of the granular material, extra parameters must be added to the equation of
the energy balance in order to incorporate the energy interchange:

E = E + meEe + mdEd (5)

where me, Ee, md and Ed are the mass exchange and energy gained or lost by
erosion and deposition, respectively.

2.3 The mechanical approach

Figure 2 shows a conceptual force balance of a block with mass m sliding down a
rough plane by the influence of gravity. In the case of a rigid body, the frictional
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force Fr is acting on the boundary between its base and the surface of the slope. The
movement of the rigid body has a direction parallel to the slope and it is influenced
only by the parallel component of the weight of the body (mgsinθ).

When the frictional force Fr is modelled as µN , where N is the normal force
(N = mgcosθ), µ is called the coefficient of friction (Figure 2) [15, 8]. The co-
efficient of static friction is obtained when the gravitational force equals the fric-
tional force, and thus µstatic = tanθ, which is dependent on the grain size, sorting,
lithology and other properties of the granular material. The coefficient of dynamic
friction µdynamic is slightly less, but at high deformation rates it approaches the co-
efficient of static friction ([10, 8]). Then, it is used as an approximation for the
friction in granular volcanic flows:

µ = tanθ = H/L (6)

This expression for the coefficient of friction is known as the Coulomb’s law [15].
It can also be derived with an energy balance where the work done is expressed as
µ mg cosθ x, and x = L/cosθ is the distance travelled on the inclined plane. All
the measurements have to be made relatives to the centre of mass of the body.

If the body is not rigid, the total force acting against the weight must include not
only the friction at the base, but also dissipative forces acting inside the body. The
internal deformation is more difficult to analyse and quantify, and it could require
the implementation of rheological assumptions accounting for the relation between
the shear rate and stress, yield strength, etc.

2.4 Segmentation of the path

Consider the granular body moving downhill as is shown in Figure 3. After a small
time interval the body has a vertical displacement of dH and a path-oriented dis-
placement of dx, when measured relative to the centre of mass. This leads to a
similar expression to equation 2 for the energy balance, which is as follows:

mg dH =
1

2
m dv2 + mA dx (7)

where dv2 is the difference between the final and initial squared velocities, dx rep-
resent the path length as Lp does in equation 2, and mA is the sum of frictional-
dissipative forces acting on the body.

By using the geometrical relationship dH/dx = sinθ (Figure 3), and replacing
it in equation 7, the expression reads:

1

2

dv2

dx
= gsinθ − A (8)

If it is considered an uniformly accelerated movement, i.e. a constant accel-
eration between the initial and final position, the term in the left hand side of the
above equation is equivalent to the acceleration of the body. Then, the frictional
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Figure 3: Schematic diagram of a body moving down a slope with a constant acceleration. This
represents one segment of the path for which the assumption of an uniformly accelerated movement
is made. In addition, constant (or averaged) frictional-dissipative forces are acting on the body.

acceleration represented by the parameter A is considered constant (or averaged) in
this interval:

A = gsinθ − a (9)

where a is the constant acceleration. (In the steady state case the velocity is consid-
ered constant and A = gsinθ.)

The segmentation of the run out path is necessary for the modelling of the path-
dependent non-conservative forces represented by A.

3 Ideas for its implementation

3.1 Modelling the acceleration ratio: A/g

From the analysis in the preceding sections, it comes out that A is dependent on
the topography, the characteristics of the granular material, and the conditions and
characteristics of the flow. In order to simulate the macroscopic behaviour of a
volcanic granular flow, A should be modelled considering the friction related to
the shear stress on the channel and the meandering of the flow, its viscosity or
resistance to flow which must be characteristic of the granular material, and the
internal deformation and spreading of the flow that could be strongly related to
the volume of the system. To make a distinction in the parameters involved in
the modelling, might be necessary to differentiate between the different types of
material and between the initial conditions of the flow.

For example, the following Voellmy-type expression for the friction force was
used to study the run out of snow avalanches [2]:

F = mg
v2

ξh
+ µmg cos θ (10)

where h is the flow depth, θ the local slope, v the velocity of the flow, µ a friction
coefficient related by the authors to the snow fluidity, and ξ a coefficient associated
to the dynamic friction related to the path roughness. However, the second term on
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Voellmy–Salm–Gubler model
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the right hand side of the above equation is analogue to the Coulomb’s expression
for the friction force (see Section 2.3). Also, the first term on the right hand side
includes the velocity and the flow depth, which are particular characteristics of the
granular flow, and so the ξ parameter must be related to more than the roughness of
the channel. Writing the equation 10 in the form of the acceleration ratio:

A

g
= µ cos θ +

v2

ξh
(11)

For snow avalanches, the parameter µ depends only in the size of the avalanche
and ranges from 0.4 for small avalanches to 0.155 for large avalanches [2]. This
is exactly the same trend that the coefficient of friction (H/L, equation 6) shows
in volcanic flows: a lower value (interpreted as a higher mobility) for flows of
bigger volume (e.g. [8, 7, 5]). The ξ coefficient is influenced by the topography and
ranges from ca. 400 when the snow avalanche runs down confined straight gullies,
to ca. 1000 for avalanches moving down in a wide open rough slope [2]. Then,
using the equation 11, the acceleration ratio would account for the friction force
interacting with the channel (controlled by µ), and dissipative forces related to the
fluidity and internal deformation of the flow (controlled by ξ). This type of model
enables to compute the run out distance of the flow, the maximum velocities reached
on various segments of the path (defined by the user), the flow depth (assuming a
constant mass flow rate given by the initial flow rate just after the release), and the
impact pressure [2]. However, this model is restricted to one-dimensional run out
profile because the spreading of the avalanche is not included.

A similar approach has been used for debris flows (e.g. [9, 1]). One variation
is the interchange of the flow depth by the hydraulic radious in equation 11. In
this case the ξ parameter of equation 10 is expressed as the squared of the Chezy
resistance coefficient [9]. Also, a slightly different equation has also been used,
where the acceleration ratio would read as follows [1]:

A

g
= µ cos θ + Du2 (12)

where the coefficient µ is analogue to the one in equation 11 and depends on the
watershed surface, and D is a coefficient related to the dynamic drag of the flow.
The mass-to-drag ratiom/D depends a great deal on size distribution.

The previous examples account for a two-parameters model used in snow avalanches
and debris flow hazard assessment. By using a Coulomb-like expression to model
the friction force plus a dynamic term related to the internal deformation, these ap-
proaches can give good results when simulating the runout of the granular material.
Modelling the acceleration ratio as in equation 11 or 12, the coefficient of friction
µ does depends on the volume of the flow.

3.2 Spreading of the granular material

When considering the centre of mass of the deposit in equation 4, the maximum
distance traveled will be proportional to the volume and dependent on the spreading

(A simple model for flowing 
snow avalanches)

h

µ

flow depth

Coulomb friction coefficient: 0.3 (small avalanches) - 0.155 
(large avalanches)

ξ turbulent friction coefficient [m/s2]: 400 (confined) - 1000 
(wide open slope)



FLOW3D

PY
R

O
C

L
A

ST
IC

FL
O

W
H

A
Z

A
R

D
A

T
V

O
L

C
Á
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Figure 2. Visualization comparison of energy cone (shaded area) and FLOW3D (colored flow threads) simulations of Level I and Level II type events. In
the Level I simulation the 4,000-year BP deposits are shown in red. In the Level II simulation the 8,500 y BP deposits are shown in blue. Mapped deposits,
digitized as vectors, were color encoded to the topography using a raster bit map.

Sheridan et al. (2004). Natural Hazards

PYROCLASTIC FLOW HAZARD AT VOLCÁN CITLALTÉPETL 217

(τ ) depends on both basal friction (a0) and viscosity parameters (a1) [c.f. Mellor,
1978; Pariseau and Voight, 1979; McEwen and Malin, 1989].

τ = a0 + v∗a1 (2)

FLOW2D code mimics actual flow velocity better than does the energy line and
it shows the runback of flows off large topographic barriers. It is also easily used
in 2D on personal computers. However this code is limited by the need to tabulate
topographic profiles along each flow path. Another disadvantage is that FLOW2D
does not consider lateral movement of the pyroclastic flows. For our FLOW2D
simulations of the level I pyroclastic flows we used an average value of 0.15 for
a0 and 0.01 for a1. For the level II flows we used an average value of 0.05 for a0

and 0.01 for a1. These are empirical values that fit with the maximum extensions
for pyroclastic flow eruptions of short and intermediate magnitude, respectively,
as mentioned earlier. The results of the FLOW2D calculations are shown in the
hazard maps of Figure 3. Development of FLOW2D has since been superseded by
FLOW3D, which is further described in the following section.

3.1.3. FLOW3D

The FLOW3D code is based on the generation of a digital elevation model (DEM)
representing the topographic surface along which the gravity flows move on a
Triangulated Irregular Network (TIN) of elevations. This kinematic model is easy
to construct from various types of data sets and a variety of geometric configur-
ations (point source, radial distribution, linear or random) can be used to model
flow initiation. The triangles are contiguous at their boundaries so that there are
no discontinuities such as those that exist with raster data. The TIN also serves
as the basis for the computations where gravitational acceleration is assigned to
each triangular element of the network. The flow algorithm considers previous
flow models for gravity slides and assumes a constant mass, thickness, and density
of the flows. Within each specified triangle a single vector represents the driving
acceleration due to gravity.

The FLOW3D code (Kover, 1995; Sheridan and Kover, 1996) provides velocity
histories of particle streams along flow paths in three dimensions. It is similar to
the “FLOW” model of McEwen and Malin (1989) in its calculation of frictional
resistance, acceleration along the path of steepest descent for each terrain ele-
ment, and the assumption that the center of mass is focused at the ground surface.
However, FLOW3D calculates viscous and turbulent resistances by multiplying
the user-defined coefficients of energy dissipation by the flow velocity, which is
determined incrementally. Multiple flow paths are incremented every 0.1 seconds
across triangular elements using as many as three parameters to calculate shear
resistance (τ ): basal friction (a0), viscosity (a1) and turbulence (a2) (cf. Mellor,
1978; Pariseau and Voight, 1979; McEwen and Malin, 1989).

τ = a0 + v∗a1 + v2∗a2 (3)

basal friction viscosity turbulence



Flow spreading and deposition
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Figure 4: Sketch showing the geometrical relationship of the measurement in the lengths of travelling
of the flow. Lp is distance over the path of the centre of mass, Lcm is the horizontal distance travelled
by the centre of mass, Lh is the maximum horizontal distance travelled by the flow, and Ls is the
spreading length of the granular material. H is the height drop. See the details in the text.

of the flow. Spreading do not only depends on the volume of the material, but also
in its kinetic energy [17]. The maximum travel distance would show a positive trend
with respect of the initial velocity, independently of the coefficient of friction [17].

Consider the lengths in Figure 4. In order to obtain an approximation of the
travelled distance over the path of the centre of mass Lp (without considering the
meandering of the flow), the following equation can be used:

Lp ≈ (H2 + L2

cm)1/2 (13)

where Lcm = Lh − Ls is the horizontal distance travelled by the centre of mass,
Lh is the maximum horizontal distance travelled by the flow, and Ls is related to
the spreading of the granular material. Generally, but depending on the order of
magnitudes of the lengths H and L, the value of Lp should be similar to L. In
addition, an approximation for the height drop is as follows:

Hcm = H −
1

2

V

S
= H −

1

2
h̄ (14)

where Hcm is the height drop by the centre of mass, V is the volume, S the area of
the deposit, and h̄ the averaged thickness of the deposit. Because the spreading is
mainly horizontally and the different order of magnitude of the height lost by the
flow and the thickness of the deposit, H − Hcm is not much different than H .

To estimate the value of the spreading length Ls, the location of the centre of
mass (CM) and a specific shape for the area must be assumed:

Ls =
(

S

b

)1/2

(15)

where b is the shape factor that has the value of, for example, 4c when the shape is a
rectangle with the CM is in the center, πc when the shape is an ellipse with the CM
in the center, or 2πc if it is a half-ellipse with the CM in the middle of the longer
axis; c ∈ ]0, 1] is the ratio between the smaller and bigger semi-axis or radios in the
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the spreading of the granular material. Generally, but depending on the order of
magnitudes of the lengths H and L, the value of Lp should be similar to L. In
addition, an approximation for the height drop is as follows:

Hcm = H −
1

2

V

S
= H −

1

2
h̄ (14)

where Hcm is the height drop by the centre of mass, V is the volume, S the area of
the deposit, and h̄ the averaged thickness of the deposit. Because the spreading is
mainly horizontally and the different order of magnitude of the height lost by the
flow and the thickness of the deposit, H − Hcm is not much different than H .

To estimate the value of the spreading length Ls, the location of the centre of
mass (CM) and a specific shape for the area must be assumed:

Ls =
(

S

b

)1/2

(15)

where b is the shape factor that has the value of, for example, 4c when the shape is a
rectangle with the CM is in the center, πc when the shape is an ellipse with the CM
in the center, or 2πc if it is a half-ellipse with the CM in the middle of the longer
axis; c ∈ ]0, 1] is the ratio between the smaller and bigger semi-axis or radios in the
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planimetric area
average depth

V
S
h̄

ks is a shape factor: 4c for a rectangle, πc for an ellipse (c is the ratio 
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LAHARZ

Objectives  5

topography downslope or downstream from the lahar source 
area is known (fig. 1). Relative to other empirical methods, an 
advantage of the Iverson and others (1998) method is that it 
makes full use of three-dimensional topographic constraints 
for forecasting inundation.

Because flow-volume V is the independent variable in the 
method of Iverson and others (1998) and because the volumes 
of future lahars are indeterminate, forecasts of inundation lim-
its generally postulate a range of prospective V-values. Inunda-
tion limits A and B are then calculated for the range of postu-
lated V’s. This procedure results in a nested set of inundation 
hazard zones, which depict the combined effect of uncertain-
ties about the volumes and behaviors of future flows. Selection 
of appropriate V-values depends on geological knowledge, and 
ideally, on recurrence probabilities determined for flows with 
various V’s (Iverson and others, 1998). However, data suitable 
for calculating such probabilities commonly are unavailable, 
and geological inferences about hydrologic contributing areas, 
thicknesses of soil mantles, and the magnitudes of events in 
similar settings provide the main basis for selecting prospec-
tive flow volumes.

Objectives
The overall objective of this study is to extend the hazard-

zone delineation methodology of Iverson and others (1998) to 
nonvolcanic debris flows and rock avalanches. To attain this 
objective, several steps are taken and are enumerated here.

(1) Assemble a database consisting of flow volumes (V) 
paired with maximum inundated valley cross-sectional areas 
(A) and (or) total inundated planimetric areas (B) for a large 
number of nonvolcanic debris flows and rock avalanches  
(fig. 2). This database parallels that assembled for lahars by 
Iverson and others (1998) and partly reproduces the rock-
avalanche databases assembled by Li Tianchi (1983), Legros 
(2002), and others.

(2) Use the database to test whether power-law equations 
with specified 2/3-exponents satisfactorily predict inundated-
planimetric and cross-sectional areas as functions of flow 
volume for nonvolcanic debris flows and rock avalanches. 
This test involves determining the goodness of fit of the 2/3 
power-law equations, as well as statistical comparison of these 
equations to alternative statistical models. If the 2/3 power-law 

Figure 2. Diagram showing the maximum inundated cross-sectional area, A, and total inundated 
planimetric area, B, of a lahar runout path downstream from a source area on a volcano. The downstream 
edge of the source area is delineated by using an H/L cone in this instance. Figure modified from Iverson 
and others (1998).

Trimline
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The velocity scaling U ! "gR
–—

, combined with equation 2, produces the
peak discharge scaling Qmax ! Amax"gR

–—
With this scaling we define the di-

mensionless peak discharge as

(3)

in which the characteristic length scale "Amax
—–– 

emerges as the counterpart to
the characteristic velocity scale, "gR

–—
. In turn, the characteristic time scale

results from the quotient of the characteristic length and velocity scales,
"Amax

—–– 
/"gR

–—
. With this time scale we define the dimensionless lahar dura-

tion at a cross section as

(4)

The desired relationship between Amax and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

(5)

Adopting the simplified notation C = (KQ*maxT*)–2/3, equation 5 may be ex-
pressed compactly as

A = CV 2/3, (6)

in which A is written as shorthand for Amax. If we assume that C is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then A# V 2/3.

Data summarized in the Statistical Basis section test the hypothesis that
C is more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (V) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume V of a distal lahar equals the volume of distal la-
har deposits. Therefore,

(7)

in which $ denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and h denotes the la-
har deposit thickness measured normal to the surface. The mean value of h
in area B is h–, but equation 7 does not preclude the possibility of h = 0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if h–# B1/2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), h– # B1/2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, h– # B1/2

applies approximately if h–/"B
—

is approximately constant (Fig. 4). Typically,
h–/"B

—
« 1 because lahar paths and deposits are dominantly tabular. Adopting

the notation % =  h–/"B
—

and postulating that % is a small constant, we substi-
tute h– = %/"B

—
in equation 7 to rewrite the equation as V = %B3/2, or as

B = cV 2/3, (8)

in which c = %–2/3 is a hypothetical constant, c » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of c must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to V 2/3, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients c and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation

V hd hB
B

= =& $ ,

V V A KQ T* * *max max= =3 2 .

T T
A gR

*
max

= .

Q
Q

A gR
*max

max

max
= ,

Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, A, and wetted perimeter, P, of a valley occupied by
a passing lahar.
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The velocity scaling U ! "gR
–—

, combined with equation 2, produces the
peak discharge scaling Qmax ! Amax"gR

–—
With this scaling we define the di-

mensionless peak discharge as

(3)

in which the characteristic length scale "Amax
—–– 

emerges as the counterpart to
the characteristic velocity scale, "gR

–—
. In turn, the characteristic time scale

results from the quotient of the characteristic length and velocity scales,
"Amax

—–– 
/"gR

–—
. With this time scale we define the dimensionless lahar dura-

tion at a cross section as

(4)

The desired relationship between Amax and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

(5)

Adopting the simplified notation C = (KQ*maxT*)–2/3, equation 5 may be ex-
pressed compactly as

A = CV 2/3, (6)

in which A is written as shorthand for Amax. If we assume that C is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then A# V 2/3.

Data summarized in the Statistical Basis section test the hypothesis that
C is more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (V) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume V of a distal lahar equals the volume of distal la-
har deposits. Therefore,

(7)

in which $ denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and h denotes the la-
har deposit thickness measured normal to the surface. The mean value of h
in area B is h–, but equation 7 does not preclude the possibility of h = 0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if h–# B1/2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), h– # B1/2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, h– # B1/2

applies approximately if h–/"B
—

is approximately constant (Fig. 4). Typically,
h–/"B

—
« 1 because lahar paths and deposits are dominantly tabular. Adopting

the notation % =  h–/"B
—

and postulating that % is a small constant, we substi-
tute h– = %/"B

—
in equation 7 to rewrite the equation as V = %B3/2, or as

B = cV 2/3, (8)

in which c = %–2/3 is a hypothetical constant, c » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of c must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to V 2/3, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients c and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation
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Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, A, and wetted perimeter, P, of a valley occupied by
a passing lahar.
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The velocity scaling U ! "gR
–—

, combined with equation 2, produces the
peak discharge scaling Qmax ! Amax"gR

–—
With this scaling we define the di-

mensionless peak discharge as

(3)

in which the characteristic length scale "Amax
—–– 

emerges as the counterpart to
the characteristic velocity scale, "gR

–—
. In turn, the characteristic time scale

results from the quotient of the characteristic length and velocity scales,
"Amax

—–– 
/"gR

–—
. With this time scale we define the dimensionless lahar dura-

tion at a cross section as

(4)

The desired relationship between Amax and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

(5)

Adopting the simplified notation C = (KQ*maxT*)–2/3, equation 5 may be ex-
pressed compactly as

A = CV 2/3, (6)

in which A is written as shorthand for Amax. If we assume that C is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then A# V 2/3.

Data summarized in the Statistical Basis section test the hypothesis that
C is more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (V) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume V of a distal lahar equals the volume of distal la-
har deposits. Therefore,

(7)

in which $ denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and h denotes the la-
har deposit thickness measured normal to the surface. The mean value of h
in area B is h–, but equation 7 does not preclude the possibility of h = 0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if h–# B1/2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), h– # B1/2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, h– # B1/2

applies approximately if h–/"B
—

is approximately constant (Fig. 4). Typically,
h–/"B

—
« 1 because lahar paths and deposits are dominantly tabular. Adopting

the notation % =  h–/"B
—

and postulating that % is a small constant, we substi-
tute h– = %/"B

—
in equation 7 to rewrite the equation as V = %B3/2, or as

B = cV 2/3, (8)

in which c = %–2/3 is a hypothetical constant, c » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of c must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to V 2/3, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients c and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation
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Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, A, and wetted perimeter, P, of a valley occupied by
a passing lahar.
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The velocity scaling U ! "gR
–—

, combined with equation 2, produces the
peak discharge scaling Qmax ! Amax"gR

–—
With this scaling we define the di-

mensionless peak discharge as

(3)

in which the characteristic length scale "Amax
—–– 

emerges as the counterpart to
the characteristic velocity scale, "gR

–—
. In turn, the characteristic time scale

results from the quotient of the characteristic length and velocity scales,
"Amax

—–– 
/"gR

–—
. With this time scale we define the dimensionless lahar dura-

tion at a cross section as

(4)

The desired relationship between Amax and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

(5)

Adopting the simplified notation C = (KQ*maxT*)–2/3, equation 5 may be ex-
pressed compactly as

A = CV 2/3, (6)

in which A is written as shorthand for Amax. If we assume that C is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then A# V 2/3.

Data summarized in the Statistical Basis section test the hypothesis that
C is more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (V) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume V of a distal lahar equals the volume of distal la-
har deposits. Therefore,

(7)

in which $ denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and h denotes the la-
har deposit thickness measured normal to the surface. The mean value of h
in area B is h–, but equation 7 does not preclude the possibility of h = 0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if h–# B1/2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), h– # B1/2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, h– # B1/2

applies approximately if h–/"B
—

is approximately constant (Fig. 4). Typically,
h–/"B

—
« 1 because lahar paths and deposits are dominantly tabular. Adopting

the notation % =  h–/"B
—

and postulating that % is a small constant, we substi-
tute h– = %/"B

—
in equation 7 to rewrite the equation as V = %B3/2, or as

B = cV 2/3, (8)

in which c = %–2/3 is a hypothetical constant, c » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of c must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to V 2/3, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients c and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation
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Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, A, and wetted perimeter, P, of a valley occupied by
a passing lahar.
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The velocity scaling U ! "gR
–—

, combined with equation 2, produces the
peak discharge scaling Qmax ! Amax"gR

–—
With this scaling we define the di-

mensionless peak discharge as

(3)

in which the characteristic length scale "Amax
—–– 

emerges as the counterpart to
the characteristic velocity scale, "gR

–—
. In turn, the characteristic time scale

results from the quotient of the characteristic length and velocity scales,
"Amax

—–– 
/"gR

–—
. With this time scale we define the dimensionless lahar dura-

tion at a cross section as

(4)

The desired relationship between Amax and lahar volume (V) results from
using equations 3 and 4 in equation 1 and canceling redundant terms to ob-
tain a dimensionless version of the mass-conservation equation,

(5)

Adopting the simplified notation C = (KQ*maxT*)–2/3, equation 5 may be ex-
pressed compactly as

A = CV 2/3, (6)

in which A is written as shorthand for Amax. If we assume that C is constant,
which is equivalent to assuming that lahar hydrographs have constant
shapes, then A# V 2/3.

Data summarized in the Statistical Basis section test the hypothesis that
C is more or less constant and allow us to calibrate its value. With this cali-
bration, equation 6 provides a means of calculating cross-sectional areas
and lateral limits of lahar inundation in valleys with known cross-sectional
shapes. Because equation 6 neglects downstream attenuation, it provides a
conservatively large estimate of the maximum cross section inundated dur-
ing lahar passage.

Analysis of Planimetric Area Inundated (B)

To assess the planimetric area and distal limit of downstream inundation,
an additional equation is needed, because equation 6 implies that lahars
travel downstream forever. Instead, as lahars move downstream they either
lose momentum and come to rest—incrementally or abruptly—to form de-
bris-flow deposits (Vallance and Scott, 1997), or they grow so dilute that
sedimentation does not produce deposits that resemble those of debris flows
(Pierson and Scott, 1985). For our purposes, we identify the distal extent of
lahar deposits as the downstream limit of discernable overbank debris-flow
deposition. Furthermore, because equation 6 constrains the lateral limits of
inundation, we need only to determine the planimetric area of inundation to
determine the distal limit of inundation (Fig. 1).

The relationship between lahar volume and planimetric area of inundation
assumes that the lahar volume leaving the proximal hazard area (V) matches
the volume deposited downstream. This is a simplistic assumption, because
a lahar may gain or lose sediment and/or water and thereby alter its volume
gradually as it moves downstream. However, most lahars grow in volume
principally when crossing steep, proximal terrain (e.g., Pierson et al., 1990),

and do not leave voluminous deposits until they begin to descend distal val-
leys (K. Scott et al., 1995). As a reasonable approximation (and a requisite
for our analysis), we therefore regard distal lahar volume as a constant.

We assume the volume V of a distal lahar equals the volume of distal la-
har deposits. Therefore,

(7)

in which $ denotes infinitesimal planimetric elements of the distal lahar
path, B denotes the total planimetric area of this path, and h denotes the la-
har deposit thickness measured normal to the surface. The mean value of h
in area B is h–, but equation 7 does not preclude the possibility of h = 0 (i.e.,
no deposition) in some parts of the distal lahar path.

Equation 7 can be simplified if h–# B1/2 applies for lahar paths of diverse
shapes and sizes. If all lahar paths were geometrically similar (i.e., had iden-
tical shapes and differed only in size), h– # B1/2 would apply exactly. How-
ever, even if lahar paths differ significantly in planimetric shape, h– # B1/2

applies approximately if h–/"B
—

is approximately constant (Fig. 4). Typically,
h–/"B

—
« 1 because lahar paths and deposits are dominantly tabular. Adopting

the notation % =  h–/"B
—

and postulating that % is a small constant, we substi-
tute h– = %/"B

—
in equation 7 to rewrite the equation as V = %B3/2, or as

B = cV 2/3, (8)

in which c = %–2/3 is a hypothetical constant, c » 1. This equation expresses
the desired relation between lahar volume and the planimetric area of inun-
dation, but the validity of the equation and the constancy of c must be tested
with data, as described in the next section.

STATISTICAL BASIS

To test and calibrate equations 6 and 8, we analyze trends in lahar-inun-
dation data. Testing of the equations involves statistical determination of
whether the inundation areas A and B are proportional to V 2/3, as equations
6 and 8 predict. Calibration of the equations entails statistical determination
of the best-fit values of the proportionality coefficients c and C.

The power-law forms of equations 6 and 8 motivate us to linearize the
equations by logarithmic transformation prior to statistical testing and cali-
bration. Log transformation is appropriate because we expect the deviation
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Figure 3. Definitions of the inundated hydraulic radius, R, inundated
cross-sectional area, A, and wetted perimeter, P, of a valley occupied by
a passing lahar.
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“2/3 slope” predictive models for the cross-sectional and planimetric areas
of inundation by lahars:

A = 0.05V 2/3 (11)

B = 200V 2/3. (12)

There exists the possibility that an unusual event (such as the Tahoma la-
har, which plots outside the predictive confidence envelope of Fig. 5) does
not behave according to statistical expectations. Nonetheless, even with this
limitation, equations 11 and 12 provide useful guidelines for forecasting ar-
eas subject to inundation by lahars of various volumes. The utility of equa-
tions 11 and 12 is greatest if the equations are used to predict a range of in-
undation areas for a range of V and to thereby depict a gradation of
inundation hazard. Then the statistical uncertainty of equations 11 and 12
(e.g., as measured by standard errors listed in Table 2, which imply roughly
a factor of two errors in predicting A or B for a specified V) is superposed on
the uncertainty of forecasting V for the next lahar to descend a drainage.
Gradational hazard zones reflect both kinds of uncertainty.

IMPLEMENTATION

Figure 7 depicts an algorithmic flow chart that shows how we implement
our methodology. Implementation does not require use of GIS, but to auto-
mate implementation, we have embedded equation 11 in a GIS that calcu-
lates the inundated valley cross-sectional area (A), identifies planimetric ar-
eas contributed by successive downstream cross sections, sums the
cumulative planimetric areas, and compares the summed planimetric area
to the total inundation area (B) defined by equation 12. The suite of pro-
grams developed to perform these tasks, LAHARZ (Schilling, 1998), con-
structs a nested set of inundation-hazard zones in each valley considered,
with one zone for each user-specified lahar volume (V). This application of
GIS for hazard-zone delineation contrasts with that of Mark and Ellen
(1995), who assessed the paths of steepest descent (one grid cell in width)
inundated by small debris flows emanating from multiple source areas.

LAHARZ is a suite of Arc/INFO macrolanguage (AML) programs that
run within the cell-based Grid program of Arc/INFO (Schilling, 1998).
Model input consists of a DEM of topography, derived supplementary grids,
specified lahar volumes, and a specified H/L value for the proximal hazard
zone boundary (Fig. 7). A preliminary program establishes the position of
the proximal hazard zone boundary by computing where the H/L energy
cone intersects surface topography. Supplementary Arc/INFO surface hy-
drology grids (e.g., Jenson and Domingue, 1988) indicate slope directions
and the presence of streams. LAHARZ locates a starting cell wherever
stream valleys intersect the proximal hazard-zone boundary. Calculations
progress downstream cell by cell according to values in the slope-direction
grid (Fig. 8A). At each stream cell LAHARZ constructs three valley cross
sections, at azimuth intervals of 45° (Fig. 8B).

LAHARZ fills each valley cross section to the appropriate level by first
comparing the stream cell elevation to the elevation of adjacent cells along
the cross section azimuth (Fig. 8C). The algorithm calculates the difference
in elevation between the stream cell and an adjacent cell, multiplies the dif-
ference by the cell width (or cell diagonal for diagonal azimuths), and sub-
tracts the result from A as specified by equation 11. After completing this
operation for the stream cell, the algorithm then shifts position to outboard
adjacent cells and repeats the operation of calculating differences in eleva-
tion and subtracting from A the area needed to fill a tier of the cross sec-
tion. Cross-section filling by subtraction from A continues until A is de-
pleted. In map view, the ends of cross sections determine the lateral limits
of inundation.

To delineate distal inundation limits, LAHARZ stores the planimetric co-
ordinates of each cell as a cross section is constructed (Fig. 1). Construction
of each cross section yields a stored “footprint” of cells (darkly shaded areas
in Fig. 8C) that occupies a fraction of the total planimetric area, B (Fig. 1).
After LAHARZ calculates a set of three cross sections for a given stream
cell, it adds the sections’total footprint to the cumulative inundation footprint
from upstream cross sections. Although footprints of a particular cross sec-
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Figure 5. Scatter plot of inundated valley cross-section area A as a
function of lahar volume V, constructed using the data of Table 1. The
best-fit log-log regression line and 95% confidence intervals for regres-
sion (dashed lines) and prediction (dotted lines) are also shown.
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Figure 6. Scatter plot of inundated planimetric area B as a function
of lahar volume V, constructed using the data of Table 1. The best-fit
log-log regression line and 95% confidence intervals for regression
(dashed lines) and prediction (dotted lines) are also shown.
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har, which plots outside the predictive confidence envelope of Fig. 5) does
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limitation, equations 11 and 12 provide useful guidelines for forecasting ar-
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inundation hazard. Then the statistical uncertainty of equations 11 and 12
(e.g., as measured by standard errors listed in Table 2, which imply roughly
a factor of two errors in predicting A or B for a specified V) is superposed on
the uncertainty of forecasting V for the next lahar to descend a drainage.
Gradational hazard zones reflect both kinds of uncertainty.
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Figure 7 depicts an algorithmic flow chart that shows how we implement
our methodology. Implementation does not require use of GIS, but to auto-
mate implementation, we have embedded equation 11 in a GIS that calcu-
lates the inundated valley cross-sectional area (A), identifies planimetric ar-
eas contributed by successive downstream cross sections, sums the
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to the total inundation area (B) defined by equation 12. The suite of pro-
grams developed to perform these tasks, LAHARZ (Schilling, 1998), con-
structs a nested set of inundation-hazard zones in each valley considered,
with one zone for each user-specified lahar volume (V). This application of
GIS for hazard-zone delineation contrasts with that of Mark and Ellen
(1995), who assessed the paths of steepest descent (one grid cell in width)
inundated by small debris flows emanating from multiple source areas.

LAHARZ is a suite of Arc/INFO macrolanguage (AML) programs that
run within the cell-based Grid program of Arc/INFO (Schilling, 1998).
Model input consists of a DEM of topography, derived supplementary grids,
specified lahar volumes, and a specified H/L value for the proximal hazard
zone boundary (Fig. 7). A preliminary program establishes the position of
the proximal hazard zone boundary by computing where the H/L energy
cone intersects surface topography. Supplementary Arc/INFO surface hy-
drology grids (e.g., Jenson and Domingue, 1988) indicate slope directions
and the presence of streams. LAHARZ locates a starting cell wherever
stream valleys intersect the proximal hazard-zone boundary. Calculations
progress downstream cell by cell according to values in the slope-direction
grid (Fig. 8A). At each stream cell LAHARZ constructs three valley cross
sections, at azimuth intervals of 45° (Fig. 8B).

LAHARZ fills each valley cross section to the appropriate level by first
comparing the stream cell elevation to the elevation of adjacent cells along
the cross section azimuth (Fig. 8C). The algorithm calculates the difference
in elevation between the stream cell and an adjacent cell, multiplies the dif-
ference by the cell width (or cell diagonal for diagonal azimuths), and sub-
tracts the result from A as specified by equation 11. After completing this
operation for the stream cell, the algorithm then shifts position to outboard
adjacent cells and repeats the operation of calculating differences in eleva-
tion and subtracting from A the area needed to fill a tier of the cross sec-
tion. Cross-section filling by subtraction from A continues until A is de-
pleted. In map view, the ends of cross sections determine the lateral limits
of inundation.

To delineate distal inundation limits, LAHARZ stores the planimetric co-
ordinates of each cell as a cross section is constructed (Fig. 1). Construction
of each cross section yields a stored “footprint” of cells (darkly shaded areas
in Fig. 8C) that occupies a fraction of the total planimetric area, B (Fig. 1).
After LAHARZ calculates a set of three cross sections for a given stream
cell, it adds the sections’total footprint to the cumulative inundation footprint
from upstream cross sections. Although footprints of a particular cross sec-
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Figure 5. Scatter plot of inundated valley cross-section area A as a
function of lahar volume V, constructed using the data of Table 1. The
best-fit log-log regression line and 95% confidence intervals for regres-
sion (dashed lines) and prediction (dotted lines) are also shown.
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Figure 6. Scatter plot of inundated planimetric area B as a function
of lahar volume V, constructed using the data of Table 1. The best-fit
log-log regression line and 95% confidence intervals for regression
(dashed lines) and prediction (dotted lines) are also shown.
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topography downslope or downstream from the lahar source 
area is known (fig. 1). Relative to other empirical methods, an 
advantage of the Iverson and others (1998) method is that it 
makes full use of three-dimensional topographic constraints 
for forecasting inundation.

Because flow-volume V is the independent variable in the 
method of Iverson and others (1998) and because the volumes 
of future lahars are indeterminate, forecasts of inundation lim-
its generally postulate a range of prospective V-values. Inunda-
tion limits A and B are then calculated for the range of postu-
lated V’s. This procedure results in a nested set of inundation 
hazard zones, which depict the combined effect of uncertain-
ties about the volumes and behaviors of future flows. Selection 
of appropriate V-values depends on geological knowledge, and 
ideally, on recurrence probabilities determined for flows with 
various V’s (Iverson and others, 1998). However, data suitable 
for calculating such probabilities commonly are unavailable, 
and geological inferences about hydrologic contributing areas, 
thicknesses of soil mantles, and the magnitudes of events in 
similar settings provide the main basis for selecting prospec-
tive flow volumes.

Objectives
The overall objective of this study is to extend the hazard-

zone delineation methodology of Iverson and others (1998) to 
nonvolcanic debris flows and rock avalanches. To attain this 
objective, several steps are taken and are enumerated here.

(1) Assemble a database consisting of flow volumes (V) 
paired with maximum inundated valley cross-sectional areas 
(A) and (or) total inundated planimetric areas (B) for a large 
number of nonvolcanic debris flows and rock avalanches  
(fig. 2). This database parallels that assembled for lahars by 
Iverson and others (1998) and partly reproduces the rock-
avalanche databases assembled by Li Tianchi (1983), Legros 
(2002), and others.

(2) Use the database to test whether power-law equations 
with specified 2/3-exponents satisfactorily predict inundated-
planimetric and cross-sectional areas as functions of flow 
volume for nonvolcanic debris flows and rock avalanches. 
This test involves determining the goodness of fit of the 2/3 
power-law equations, as well as statistical comparison of these 
equations to alternative statistical models. If the 2/3 power-law 

Figure 2. Diagram showing the maximum inundated cross-sectional area, A, and total inundated 
planimetric area, B, of a lahar runout path downstream from a source area on a volcano. The downstream 
edge of the source area is delineated by using an H/L cone in this instance. Figure modified from Iverson 
and others (1998).
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A = 0.05V 2/3

B = 200V 2/3

Iverson et al. (1998). GSA Bulletin
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complications demonstrate that recurrence relationships like that shown in
Figure 11 require critical evaluation and refinement prior to practical appli-
cation. Until such work is completed we can nonetheless portray a grada-
tion of hazards on the basis of projected inundation from a spectrum lahars
of increasing size and decreasing (but as yet unspecified) probability.

Lahars, Rock Avalanches, and Nonvolcanic Debris Flows

Many catastrophic lahars evolve from rock avalanches, but not all rock
avalanches spawn lahars (cf. Iverson et al., 1997). To draw distinctions be-
tween the two processes, it is useful to compare the results of our statistical

Figure 9. Lahar-inundation hazard map constructed by applying LAHARZ to the Mount Rainier region in western Washington. Topography
is depicted by shaded relief. The proximal hazard zone enclosed by the dark line surrounding Mount Rainier is subject to diverse hazards, in-
cluding lahars.
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Lahar-inundation hazard map constructed by applying LAHARZ to the Mount Rainier region in 
western Washington. Topography is depicted by shaded relief. The proximal hazard zone enclosed 
by the dark line surrounding Mount Rainier is subject to diverse hazards, including lahars.

Iverson et al. (1998). GSA Bulletin
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topography downslope or downstream from the lahar source 
area is known (fig. 1). Relative to other empirical methods, an 
advantage of the Iverson and others (1998) method is that it 
makes full use of three-dimensional topographic constraints 
for forecasting inundation.

Because flow-volume V is the independent variable in the 
method of Iverson and others (1998) and because the volumes 
of future lahars are indeterminate, forecasts of inundation lim-
its generally postulate a range of prospective V-values. Inunda-
tion limits A and B are then calculated for the range of postu-
lated V’s. This procedure results in a nested set of inundation 
hazard zones, which depict the combined effect of uncertain-
ties about the volumes and behaviors of future flows. Selection 
of appropriate V-values depends on geological knowledge, and 
ideally, on recurrence probabilities determined for flows with 
various V’s (Iverson and others, 1998). However, data suitable 
for calculating such probabilities commonly are unavailable, 
and geological inferences about hydrologic contributing areas, 
thicknesses of soil mantles, and the magnitudes of events in 
similar settings provide the main basis for selecting prospec-
tive flow volumes.

Objectives
The overall objective of this study is to extend the hazard-

zone delineation methodology of Iverson and others (1998) to 
nonvolcanic debris flows and rock avalanches. To attain this 
objective, several steps are taken and are enumerated here.

(1) Assemble a database consisting of flow volumes (V) 
paired with maximum inundated valley cross-sectional areas 
(A) and (or) total inundated planimetric areas (B) for a large 
number of nonvolcanic debris flows and rock avalanches  
(fig. 2). This database parallels that assembled for lahars by 
Iverson and others (1998) and partly reproduces the rock-
avalanche databases assembled by Li Tianchi (1983), Legros 
(2002), and others.

(2) Use the database to test whether power-law equations 
with specified 2/3-exponents satisfactorily predict inundated-
planimetric and cross-sectional areas as functions of flow 
volume for nonvolcanic debris flows and rock avalanches. 
This test involves determining the goodness of fit of the 2/3 
power-law equations, as well as statistical comparison of these 
equations to alternative statistical models. If the 2/3 power-law 

Figure 2. Diagram showing the maximum inundated cross-sectional area, A, and total inundated 
planimetric area, B, of a lahar runout path downstream from a source area on a volcano. The downstream 
edge of the source area is delineated by using an H/L cone in this instance. Figure modified from Iverson 
and others (1998).
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8  Mobility Statistics and Automated Hazard Mapping for Debris Flows and Rock Avalanches

Figure 3. Scatter plot of all data compiled for debris flows, rock avalanches, and lahars. Flow volume, V, is the independent variable; 
and maximum inundated cross-sectional area, A, and total, planimetric area, B, are the dependent variables. All data and data sources 
are tabulated in appendixes A and B.
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Widiwijayanti et al. (2008). Bull. Volc.

maximum instantaneous flow volume, determined from
deposited sediment volumes. In some cases we made
calculations to determine planimetric and valley cross-
section areas, and in other cases the literature was used, as
indicated in table notes. The inundation areas represented
are referenced mainly to depositional areas on lower slopes,
and not to proximal regions on the steeper volcano flanks
which may also contain some, and usually thin, deposits.
This usage is consistent with the application of the method,
which aims to predict inundation beyond the proximal
hazard zone. The data in Table 1 are rounded to, at most,
three significant figures. Higher apparent precision is noted
in much literature data, but our impression is that the
accuracy of calculations are seldom greater than this. Our
use of log-transformed data in statistical analyses accom-
modates the variation in precision and data accuracy.

Data for large flows is limited, say V>1.5×107 m3.
Events of larger size are fairly exceptional but have
occurred for instance on Montserrat (to ∼20×107 m3, the
largest historical dome collapse worldwide). In the Mon-
tserrat cases the run-out extended offshore and subaerial
inundation data are lacking or irrelevant. No doubt good
data for large PFs will be found, but for the moment the
database is limited with respect to large flows, and
prediction of PF inundation areas of large flows may
involve an extrapolation. Likewise we lack data for small
flows, say V<105 m3. Small PFs are possible but volcanic
flows of this scale are commonly characterized as rockfalls,
have shorter run-outs, are less hazardous, elutriate less
fines, and may exhibit different mobilities and inundation
properties in comparison to PFs. Thus the absence of data
in this class avoids bias in relation to the properties of PF
events more likely to reach down-valley populated areas.

For most events, we have data for both the typical valley
cross section area inundated and the planimetric area

inundated (deposit area), but for some we lack data on
valley cross-section area. This does not affect statistical
analysis because we treat the data as independent sets.

Statistical analyses

Table 2 and Fig. 1 give the results of statistical analyses,
developed for two sets of data—the complete dataset, and a
sub-set of eleven events from Montserrat. First, for all data,
Fig. 1a shows data scatter and least-squares best fit
regressions for both log A and log B, as a function of log
V. The regression lines are bounded by 95% confidence-
interval curves derived from t-distribution statistics. The
curves enclose the region in which specification of log V
enables the future values of log A or log B to be predicted
with 95% confidence.

Following Iverson et al. (1998), we also develop the
null hypothesis that asserts that the dependence of log A
and log B on log V can be represented by lines with slopes
of 2/3, as implied by scaling. A summary of the tests of
the “2/3 slope” null hypothesis is given by the F statistic
in Table 2, and the small value of these F statistics
(compared to tabulated values of F distribution) indicates
we cannot reject the null hypothesis that the differences
between the linear “best-fit” models with slopes of 0.779
and 0.741, and “2/3 slope” models, are not large. This
conclusion is supported by the similarity of r2 statistics for
the “best-fit” and “2/3 slope” regressions in Table 2.
Likewise on Fig. 1a, the lines described by the “2/3 slope”
models generally fall well within the 95% confidence
intervals for the regression lines. However, for volumes
much in excess of the database range, say >108 m3, the log
A lines display some mismatch. Most of the data were
acquired from literature and the data quality is likely
mixed but difficult to assess.

Fig. 1 Scatter plots of inundat-
ed valley cross-section area A
and planimetric area B as a
function of PF volume V, using
the data of Table 1. The best fit
log–log regression lines and
95% confidence intervals for
regression, and prediction, are
also shown. Red lines show the
trend for specified 2/3 slope. a
Data from Table 1. b Montserrat
data only

Bull Volcanol

Similar results are shown for the high quality Montserrat
dataset in Table 2 and Fig. 1b. In this case the differences
between linear “best-fit” models (with slopes of 0.707 and
0.634) and “2/3” slope models are very small. The r2

statistics are very similar for the two models (and higher
than for the complete dataset), and the graphical plots show
a very close match of lines for the two models, even when
extrapolated far beyond the data range.

For practical use we adopt the “2/3 slope” model, and we
suggest rounded-off parameter values as follows:

For all data: A=0.05 V 2/3, B=35 V 2/3

For Montserrat data: A=0.1 V 2/3, B=40 V 2/3

The statistical uncertainty of these equations is
measured approximately by the standard errors listed in
Table 2, which imply an uncertainty of a factor of about

two or more in predicting A or B for a specified V. The
statistical values reported in Table 2 for least-squares fits
using the “2/3 slope” model differ slightly from those
developed with stipulated rounded-off intercepts (not
shown). However before accepting such values, we tested
the predicted inundations against mapped PFs, as dis-
cussed below.

Implementation

Implementation does not require use of GIS, but GIS surely
facilitates it and we have used the LAHARZ programs
developed to perform the task. LAHARZ is a suite of Arc/
INFO macrolanguage (AML) programs that run within the
cell-based Grid Program of Arc/INFO (Schilling 1998).
Model input consists of a DEM of topography, derived

Table 1 Pyroclastic flow deposit data

Code of
events

Name of
events/location

Time of events Reference/source of data Flow volume,
V (m3)b

Cross-
section
area, A (m2)c

Planimetric
area, B (m2)b

1 SHV1a Mosquito Ghaut 3-Apr-96 Calder et al. (2002); Cole et al. (2002) 200,000 160 212,000
2 SHV2a Tar River Valley 12-May-96 Calder et al. (2002); Cole et al. (2002) 400,000 410 350,000
3 SHV3a Tar River Valley 29-Jul-96 Calder et al. (2002); Cole et al. (2002) 2,800,000 1,350 1,320,000
4 SHV4a White River 30-Mar-97 Calder et al. (2002); Cole et al. (2002) 2,600,000 1,340 272,000
5 SHV5a White River 11-Apr-97 Calder et al. (2002); Cole et al. (2002) 2,900,000 1,050 648,000
6 SHV6a Tuitt’s Ghaut 5-Jun-97 Calder et al. (2002); Cole et al. (2002) 400,000 300 152,000
7 SHV7a Mosquito Ghaut 17-Jun-97 Calder et al. (2002); Cole et al. (2002) 800,000 300 223,000
8 SHV8a Mosquito Ghaut 25-Jun-97 Calder et al. (2002); Cole et al. (2002) 5,500,000 1,440 920,000
9 SHV9a Fort Ghaut/Gages Valley 3-Aug-97 Calder et al. (2002); Cole et al. (2002) 8,800,000 2,240 2,460,000

10 SHV10a Mosquito & Tuitt’s Ghauts 21-Sep-97 Calder et al. (2002); Cole et al. (2002) 13,600,000 4,350 2,400,000
11 SHV11a White River 6-Nov-97 Calder et al. (2002); Cole et al. (2002) 6,000,000 1,880 1,340,000
12 Mer1 Kali Sat 2 1998 Schwarzkopf and Schmincke (2000) 258,000 N.D. 129,000
13 Mer2 Kali Senowo 2 &3 1998 Schwarzkopf and Schmincke (2000) 285,000 150 57,000
14 Mer3 Kali Lamat 1998 Schwarzkopf and Schmincke (2000) 109,000 N.D. 43,800
15 Mer4 Kali Putih/Sat North I 1998 Schwarzkopf and Schmincke (2000) 21,900 N.D. 87,500
16 Mer5 Kali Putih/Sat North II 1998 Schwarzkopf and Schmincke (2000) 175,000 N.D. 350,000
17 Mer6 Kali Putih/Sat South I 1998 Schwarzkopf and Schmincke (2000) 368,000 N.D. 123,000
18 Mer7 Kali Putih/Sat South II 1998 Schwarzkopf and Schmincke (2000) 350,000 N.D. 700,000
19 Mer9a Kali Boyong 22-Nov-94 Abdurachman et al. (2000) 2,600,000 440 1,310,000
20 Col1 Colima 1991 1991 Saucedo et al. (2004, 2005) 800,000 160 100,000
21 Col2 Colima 1994 1994 Saucedo et al. (2005) 450,000 N.D. 100,000
22 Col3 Cordoban West 1998 Saucedo et al. (2002, 2005) 800,000 220 140,000
23 Col4 Cordoban East 1998 Saucedo et al. (2002, 2005) 450,000 160 90,000
24 Col5 Montegrande-San Antonio 1999 Saucedo et al. (2002, 2005) 790,000 340 230,000
25 Col6 La Lumbre 1999 Saucedo et al. (2002, 2005) 360,000 240 90,000
26 Col7 Phase I 1913 1913 Saucedo et al. (2005) 130,000 N.D. 70,000
27 Unz1a Mizunashi River 3-Jun-91 Nakada and Fujii (1993);

Yamamoto et al. (1993)
789,000 320 1,110,000

28 Unz2a Mizunashi River 8-Jun-91 Nakada and Fujii (1993) 1,110,000 270 1,420,000
29 Unz3a Oshigadani River 15-Sep-91 Fujii and Nakada (1999) 3,800,000 1,190 927,000

N.D. no data
a Cross-section and planimetric areas were obtained by CW and BV from digitized deposit maps superimposed on DEMs
b The numbers are rounded to maximum of three significant figures
c The cross section areas are rounded to the nearest 10 m2

Bull Volcanol



LAHARZ for block-and-ash PFs

Widiwijayanti et al. (2008). Bull. Volc.

Fig. 2 a Block-and-ash PF
inundation simulations for
Montserrat, using A=0.1 V 2/3,
B=40 V 2/3. Volume ranges
specified for each drainage are
indicated in the inset table.
Surge limits are not simulated. b
Principal block-and-ash PF
deposits on Montserrat formed
between 1996 and 1999 (after
Cole et al. 2002). Deposit areas
include associated surge or vol-
canic blast deposits

Bull Volcanol



Shallow water models

Figura 1.1: Velocidad promediada en la vertical

Ocupando la condición de borde cinemática, las velocidades verticales en la superficie

libre y en el fondo son:

w|z=h =
Dh

Dt
|z=h ; w|z=b =

Db

Dt
|z=b (1.39)

tal como se definieron en las condiciones de borde en la superficie libre y en el lecho

(Ecuaciones (1.14) y (1.24), respectivamente). Luego, considerando que la altura

topográfica no varía con el tiempo se obtiene la ecuación de continuidad integrada

en la profundidad:
∂h

∂t
+

∂(uH)

∂x
+

∂(vH)

∂y
= 0 (1.40)

donde H es la profundidad del flujo y las velocidades se han promediado en la pro-

fundidad (Figura 1.1):

u =
1

H

� h

b

udz ; v =
1

H

� h

b

vdz (1.41)

13

• Valid when the horizontal length scale 
is much greater than the vertical 
length scale.

• Derived from depth-integrating the 
Navier-Stokes equations.

• Vertical velocity gradient is very small 
and it is discarded (only one vertical 
level); vertical pressure gradients are 
nearly hydrostatic.



Shallow water models- TITAN2D

•	  TITAN	  2D	  simula/on	  code	  →	  geophysical	  mass-‐flow	  model	  developed	  at	  the	  University	  of	  Buffalo,	  USA	  
(Pitman	  et	  al.,	  2003;	  Patra	  et	  al.,	  2005)	  

▶	  depth-‐averaged	  granular-‐flow	  model	  on	  3D	  terrain	  (Iverson	  and	  Denlinger,	  2001)	  

▶	  conserva/on	  equa/ons	  for	  mass	  (3)	  and	  momentum	  (4	  and	  5)	  →	  Coulomb-‐type	  fric/on	  term	  at	  the	  
basal	  interface

▶	  incorporaJon	  of	  topographical	  data	  +	  grid	  structure	  (DEM)	  →	  visualiza/on	  plaDorm	  for	  displaying	  the	  
flows



The	  default	  equaJon	  defining	  the	  stress	  in	  VolcFlow	  is	  :

•	  VolcFlow,	  developed	  at	  the	  Laboratoire	  Magmas	  et	  Volcans,	  Clermont-‐Ferrand,	  by	  Karim	  
Kelfoun,	  allows	  the	  simulaJon	  of	  dense	  isothermal	  volcanic	  flows

▶	  VolcFlow	  is	  wriWen	  in	  Matlab	  and	  runs	  on	  Windows	  
	  

▶	  VolcFlow	  can	  take	  into	  account	  fric/onal	  (with	  one	  or	  two	  fric/on	  angles),	  viscous,	  Bingham,	  
Voellmy,	  etc...	  as	  well	  as	  more	  complex,	  user-‐defined	  	  flow	  behaviors

Shallow water models- VolcFlow



Shallow water models

Fig. 10. Image showing computer simulations for debris avalanches. Simulation of the Arroyo Grande debris avalanche with (A) FLOW3D and (B) TITAN2D model. Both simulations
were performed over a reconstructed paleotopography (see text for details). Note that distribution and runout are practically the same in both simulations. (C) Distribution of debris
avalanche deposits at NdT that is comparable with the TITAN2D simulations (D).

Fig. 9. Pyroclastic flow simulations. A) TITAN2D simulation for pyroclastic flows showing flow thickness onmain ravines. The parameters were calibratedwith the 13 ka BP El Refugio
deposit. Higher thicknesses are exposed on the proximal areas on the cone slopes. CR: Cienega Ravine; ZR: Zaguan Ravine. B) Energy cone obtained with the FLOW3D application for
an H/L value of 0.1, the area represents the possible extension of fine ash related to pyroclastic flow.
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Shallow water models

Fig. 10. Image showing computer simulations for debris avalanches. Simulation of the Arroyo Grande debris avalanche with (A) FLOW3D and (B) TITAN2D model. Both simulations
were performed over a reconstructed paleotopography (see text for details). Note that distribution and runout are practically the same in both simulations. (C) Distribution of debris
avalanche deposits at NdT that is comparable with the TITAN2D simulations (D).

Fig. 9. Pyroclastic flow simulations. A) TITAN2D simulation for pyroclastic flows showing flow thickness onmain ravines. The parameters were calibratedwith the 13 ka BP El Refugio
deposit. Higher thicknesses are exposed on the proximal areas on the cone slopes. CR: Cienega Ravine; ZR: Zaguan Ravine. B) Energy cone obtained with the FLOW3D application for
an H/L value of 0.1, the area represents the possible extension of fine ash related to pyroclastic flow.
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 Simulation of the Arroyo Grande debris avalanche with
(A) FLOW3D and (B) TITAN2D model
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Multiphase flow modeling

Clarke et al. (2002). Nature

- PDAC2D, axisymmetric, 
transient

- Solves for one gas phase 
coupled to a few solid 
components (different grain 
size)



3D multiphase flow modeling

the effect of the surface roughness on the turbulent model of the flow
was negligible (Todesco et al., 2002).

Simulations were carried out on the IBM p5-575 cluster, with 512
Power 5 IBM processors at 1.9 GHz, installed at CINECA (Bologna).
Using 128 processors, each simulation lasted about 110 h, i.e. each
required about 14,000 CPU hours.

5. Simulation results

The following subsections describe the main features characteriz-
ing the dynamics of the five simulations reported in Table 1.

5.1. SIM1: convective column

Fig. 2 shows a snapshot of the total particle volume fraction and the
gas temperature in the column produced by SIM1, 200 s after injection
of the mixture into the atmosphere. A 3D perspective view of two
isosurfaces corresponding to the 10−4 and 10−6 total particle volume
fraction is shown in Fig. 2a. Colour contours of the total particle
volume fraction and gas temperature are also represented in Fig. 2b
and c, respectively, in a W–E cross-section of the vent (the section

plane is shown in Fig. 2a). The convective behaviour of the column is
clearly shown. After the first tens of seconds, the jet quickly grows
under the effect of air entrainment, heating and expansion. The
column reaches the top of the domain after about 110 s, when it starts
to leave the computational domain. Later, as seen in Fig. 2, the column
is characterized by a highly turbulent regime, with the development of
large asymmetric eddy structures, and by a hot inner core able to
maintain a temperature of about 900 °C up to about 4000 m a.s.l. Due
to the clear convective character of the column, the simulation was not
run for a longer period of time. Similar buoyant columnswere produced
by adopting vent conditions characterized by higher water contents
(e.g., 4wt.%H2O, vs. 2wt.%H2O for the simulations here presented), such
as those assumed in Todesco et al. (2002) and Papale and Longo (2008-
this issue).

Although this study does not focus on the dynamics of convective
columns, it is useful to analyze the dynamics of the column in terms of
variations in plume velocity and density with height. Fig. 3 shows the
time-averaged vertical distribution of the mixture velocity (Fig. 3a) and
density above the atmospheric (Fig. 3b) along the column axis, aswell as
average values along a cross-section of the plume. Gray horizontal bars
superimposed on the curves indicate the standard deviation of the

Fig. 6. Simulation SIM3: Colour contours of the (a, b, and c) base-10 logarithm of the total volume particle fraction and (d, e, and f) gas temperature at 200, 400 and 600 s, respectively,
along a W–E section of the column (shown in Fig. 2a). See colour legends for volume fraction and temperature values.
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associated oscillations. The instantaneous averaged vertical velocity of
the columnwas computed according to the formula:

bvm tð Þ >¼ ∫ s ρmvmds
∫ s ρmds

where S is a cross-section of the column at time t. The section S was
defined by the areawhere ∑k ekz10−6, although the selected threshold
value only slightly affects the results. The time-averaged velocity was
then calculated as:

b̄vm> ¼
∑
t1

t¼t0
< vm tð Þ > Δt

t1−t0

where t0 is the time at which the plume reaches the grid top boundary
and t1 is the end of the simulation. Fig. 3a shows that the vertical
velocity along the jet axis decreases upward, reaching relatively small
negative values at the top of the jet-thrust region. In contrast, the
average jet velocity decreases more rapidly along the vertical because
turbulent mixing is more efficient in the jet boundary than along the
jet axis. Above the jet-thrust region, the inner part of the jet has
positive buoyancy above 4.4 km a.s.l., whereas the cross-section
averaged velocity of the jet decreases to about 30m/s before becoming
positively buoyant about 4 km a.s.l.

Similarly, Fig. 3b shows that the jet along the axis has a lowmixing
rate, which causes a gradual decrease in density up to about 4.4 km a.s.
l. Above this height, the large fluctuations in the vertical velocity of the

Fig. 7. Simulation SIM3:maps of the (a, b, and c) base-10 logarithm of the total volume particle fraction and (d, e, and f) gas temperature at 200, 600 and 1000 s, respectively, and 10m
above ground level. The background is the shaded relief of the Somma–Vesuvio complex. See colour legends for volume fraction and temperature values. Points P1 and P2 shown in
Fig. 7c indicate the locations where the trends reported in Fig. 8 were computed.
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SpaJal	  distribuJon	  of	  
pyroclasJc	  parJcles	  in	  the	  
atmosphere	  1000s	  aYer	  the	  
start	  of	  a	  sub-‐Plinian	  
erupJon	  (mass	  flow	  =	  
5.0e07	  Kg/s)	  of	  Vesuvius.
(Image:	  Menconi	  et.	  al.	  
2005).	  

3D multiphase flow modeling



End


