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Introduction and Motivation 

Engraving of the Temple of Serapis, Campi Flegrei, Italy 
Frontispiece, Principles of Geology, Lyell (1830)   

Modern satellite-based methods of volcano
 geodesy, e.g. GPS and SAR interferometry   
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Introduction and Motivation 

Volcanotectonic (‘VT’)
 earthquakes: 

•  Accompany and precede many     
 eruptions 

•  Often precede onset of low- 
  frequency seismicity 

•  Often include distal swarms 

•  Brittle response of host     
  rock to processes in the  
  magmatic system 

•  Waveforms contain information  
  on orientation of local stresses 
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1. Documentation of systematic changes in VT fault-plane  
    solution orientations during episodes of volcanic activity 

Understanding VT Earthquakes 
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2. Numerical modeling of hypothesized mechanisms  
    for observed changes in fault-plane solution orientation 

Coulomb stress change:  

Understanding VT Earthquakes 
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Geometric Relationships 

•  Geometric relationship between dike orientation and      
  background/induced stress (Nakamura 1977)  

•  Results in a local ~90° reorientation of principal stresses: 
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(Roman et al., 2004) 

Seismological Analyses – Crater Peak (Mt. Spurr), Alaska 
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(Roman et al. 2006, 2008) 

Seismological Analyses – Soufriere Hills, Montserrat 
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Seismological Analyses – Soufriere Hills, Montserrat 

(Roman et al. 2006, 2008) 
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(Lehto et al., 2010) 

Seismological Analyses – Mt. St. Helens, Washington 

(Moran et al., 2008) 
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(Gardine et al., in prep) 

Seismological Analyses – Redoubt Volcano, Alaska 

Group	
  1	
  (early	
  swarm)	
  
• 	
  P-­‐axis	
  (S1)	
  rota/on	
  of	
  	
  	
  	
  
	
  	
  	
  90°	
  from	
  regional	
  
• 	
  Faul/ng	
  type	
  strike-­‐slip	
  

Group	
  2	
  (late	
  swarm)	
  
• 	
  P-­‐axis	
  (S1)	
  near-­‐ver/cal	
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• 	
  S2,	
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  3	
  (post-­‐erup5on)	
  
• 	
  P-­‐axis	
  (S1)	
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  to	
  regional	
  
• 	
  Faul/ng	
  type	
  strike-­‐slip	
  

Group	
  1:	
  March	
  21	
  05:46	
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  –	
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  22	
  10:04	
  UTC	
  
Group	
  2:	
  March	
  22	
  15:34	
  UTC	
  –	
  March	
  23	
  03:17	
  UTC	
  
Group	
  3:	
  April	
  7	
  12:52	
  UTC	
  –	
  April	
  22	
  17:14	
  UTC	
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(O'Brien et al., in prep) 

Seismological Analyses – Mt. Martin (Katmai), Alaska 
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Numerical Modeling – ‘Generic’ dikes 

•  Models predict ~90° reorientation of local FPS 
•  Also predict co-occurrence of ‘rotated’ and ‘regional’ FPS 

Roman (2005) 
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Model predictions vs. seismological observations 

Roman et al.  (2004) 

•  Mixing of  ‘rotated’ and ‘regional’ FPS commonly observed     
  in VT data – no spatial separation (may be resolvable with  
  high-precision relative relocations) 
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Distal VT Swarms  
Model predictions vs. seismological observations:  14/31 



•  Is 90° FPS reorientation a universal phenomenon? 

Model predictions vs. seismological observations 
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Seismological Analyses – Other Eruptions 
16/31 



Seismological Analyses – Other Eruptions 
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Seismological Analyses – Hypocenter Migration 
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(After Rubin and Pollard 1988, Ukawa and Tsukahara 1996) 

Numerical Models – Dike-induced stress regimes 

Two induced stress regimes 

•  Compressive in walls of dike 
  (hypocenters random in space) 

•  Tension above propagating dike 
  (hypocenters migrating ahead  
  of dike tip) 
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Seismological Analyses – Eruption Summary 
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Seismological Analyses – Origin of VT Swarms 

(Roman and Cashman, 2006) 
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Seismological Analyses – Apparent Relationships 
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•  In compressional environments, strongly deviatoric regional
 stresses can override volcanic stresses 

•  Results in shadow zones where faults are locked 

Numerical Modeling – Regional Stresses 

Roman and Heron (2007) 

23/31 



•  In compressional environments, strongly deviatoric regional
 stresses can override volcanic stresses 

•  Results in shadow zones where faults are locked 

Numerical Modeling – Regional Stresses 

Roman and Heron (2007) 
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•  In compressional environments, strongly deviatoric regional
 stresses can override volcanic stresses 

•  Results in shadow zones where faults are locked 

Numerical Modeling – Regional Stresses 

Roman and Heron (2007) 
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  Four eruption phases to date (I, II, III;  IV not shown)‏ 
  High rates of VT seismicity: 

 1. Prior to each eruption phase 
 2. Prior to 1997 Vulcanian sequence 
 3. During first pause in eruption 

  Long-term decrease in VT seismicity rate – transition to  
   open vent? 

Timing of VT seismicity at open-vent volcanoes 
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Timing of VT seismicity at open-vent volcanoes 

Rodgers et al., unpublished 

Telica Volcano, Nicaragua 
  High-rate 'background' LP  
   seismicity 
  Series of explosions/eruption  
    in mid to late 1999 
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Timing of VT seismicity at open-vent volcanoes 

Rodgers et al., unpublished 

  Transition from LP to VT seismicity preceding explosions 
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McNutt and Benoit (1995)  

Timing of VT seismicity at open-vent volcanoes 

  Need for an alternate model for open-vent volcanoes?  
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Summary 1: What (we think) we’ve figured out 

•  90° changes in VT FPS orientation reflect conduit inflation  
    and often precede eruptions by days to months (generally  
    concurrent with an increase in the rate of VTs) 

•  90° changes in VT FPS orientation can also accompany episodes  
    of volcanic unrest (magma intrusions) that do not proceed to  
    Eruption 

•  VT seismicity can reflect dike inflation, dike deflation, or dike     
    propagation – initial magma ascent appears to be aseismic in  
    some (high-crystallinity or high-viscosity?) systems 

• The observed pattern of VT seismicity is likely influenced by a   
   combination of factors, including the tectonic setting/ambient  
   stress field, magma composition/rheology, and magma volume.  

•  Volcanic stress field analysis has demonstrated potential as a   
    technique for monitoring and forecasting at restless volcanoes 
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 Our understanding of the mechanisms and patterns of VT seismicity
 is currently based on a small number of detailed studies of VTs –
 there are still many questions to address through additional case
 study and modeling, e.g.:  

•  What are the controls on observed stress field response? Is a
 90° reorientation of FPS indicative of magma rheology or
 perhaps eruption style/explosivity? 

•  What drives distal VT swarms? What controls their occurrence?  

•  Can FPS based on precisely-located earthquakes map out
 numerically-modeled spatial patterns of stress?    

•  Can analysis of VT earthquakes provide any indication of
 volcanic ‘false alarms’? 

•  What is the nature of VT seismicity at open-vent volcanoes?  

Summary 2: What we don’t understand (yet!) 
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