
 

 

 

 

PYFLOW User’s Manual 
A computer code for the calculation of the impact parameters of Dilute 
Pyroclastic Density Currents 

Dr. Dioguardi Fabio, Ph.D. 

31/12/2013 
 



Index 
 

 
 
1. Introduction --------------------------------------------------------------------------------- 1 
 
2. Model ----------------------------------------------------------------------------------------- 1 

2.1. Turbulent Boundary Layer Shear Flows (TBLSF) as an approximation of DPDCs ----- 1 
2.2. Shield and suspension-sedimentation criterions ------------------------------------------------- 3 
2.3. Particle analysis for providing input data --------------------------------------------------------- 4 
2.4. Two-layers model --------------------------------------------------------------------------------------- 6 
2.5 Two-components model -------------------------------------------------------------------------------- 9 
2.6. Flow stratification model ------------------------------------------------------------------------------ 9 
2.7. Probability functions of the impact parameters ------------------------------------------------ 11 

 
3. Solution algorithm ----------------------------------------------------------------------- 12 
 
4. Program setup and execution ---------------------------------------------------------- 13 

4.1. Installation---------------------------------------------------------------------------------------------- 13 
4.1.1. Linux ----------------------------------------------------------------------------------------------- 13 
4.1.2. Windows and Mac OS ------------------------------------------------------------------------- 13 

4.2. Execution ----------------------------------------------------------------------------------------------- 13 
4.2.1. The input data file------------------------------------------------------------------------------- 20 

4.2.1.a grainsize program -------------------------------------------------------------------------- 22 
4.2.3. The log file -------------------------------------------------------------------------------------------- 25 
4.2.4. Output files ------------------------------------------------------------------------------------------- 25 

 
Reference list --------------------------------------------------------------------------------- 29 
 
Symbol notation ----------------------------------------------------------------------------- 31 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

PYFLOW User's manual 1 

1. Introduction 
 
PYFLOW is a multi-block code for the calculation of the flow field variables of dilute pyroclastic 
density currents (hereafter DPDCs) starting from the deposits characteristics. The code, written in 
Fortran 90, solves an improved version of the model of Dellino et al. (2008): it calculates the 
vertical profiles of particle volumetric concentration, flow density, velocity and dynamic pressure, 
and builds probability functions for each one of the flow field variables. This new probability 
function tool allows to perform a probabilistic analysis of the results and, subsequently, to calculate 
the flow field variable at a desired exceedance probability. Thanks to these new features, PYFLOW 
can be used for the assessment of the hazard related to DPDCs, provided that an extensive field 
study and a precise laboratory analysis of the deposits’ sample is carried out. 
The code is available for Unix/Linux/Mac OS X/Windows Operating Systems. The input data come 
from DPDC deposits analysis (e.g. particles diameter, density, layer thickness, substrate roughness, 
etc.).  
 
2. Model 
 
In this section the model is described. The user should also refer to Dellino et al. (2005, 2008, 2010; 
Mele et al., 2011) for further details. 
 
2.1. Turbulent Boundary Layer Shear Flows (TBLSF) as an approximation of DPDCs 
 
A TBLSF forms when a fluid moves over a solid surface (Furbish, 1997; Schlichting and Gersten, 
2000). The analogy between TBLSFs and geophysical surface flows has been proposed for many 
decades, in particular for the sediment mechanics of particle-laden turbulent flows (Middleton and 
Southard, 1984). The TBLSF approximation has been already used to calculate average velocity 
and density of DPDCs of some explosive eruptions at Vulcano, Aeolian Islands (Dellino and La 
Volpe, 2000, Palizzi eruption) and Campi Flegrei (Dellino et al., 2004, Astroni and Agnano-Monte 
Spina eruptions). A complete sedimentological model was presented in Dellino et al. (2008) and 
experimentally validated in Dellino et al. (2010).  
In a DPDC pyroclastic particles are held in suspension by the effect of gas turbulence, as the 
fluctuating part of velocity directed upward contrasts with the downward particles’ settling velocity 
(Dellino et al., 2008). Indeed, as it follows from Prandtl’s assumption (Furbish, 1997; Schlichting 

and Gersten, 2000) the shear stress at the base of the current is ''2
*0 wuu ff ρρτ −≈= , where ρf  is 

the flow density, *u  is the shear velocity and ''wu  is the covariance of the fluctuating velocities in 
the stream (x) and upward (z) directions. 
A peculiar characteristic of DPDCs is the particle concentration stratification caused by the 
diffusive effect of the gas turbulence over the particles transported in turbulent suspension. The 
concentration profile can be calculated by the Rouse equation (Rouse, 1939): 
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where C is the particle volumetric concentration, C0 is the particle concentration at the reference 
level z0, ztot is the total flow thickness (fig. 1a). ). z0 is the base level at which the particles are being 
settled from suspension, i.e. where C(z) approaches the maximum packing limit typical of the very 
thin bedload at the base of a sediment current (that can be assumed to be equal to 0.75, as in Dellino 
et al. (2008)). Pn is the Rouse number, a dimensionless quantity defined as: 
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where w is the particle settling velocity and k is Von Karman’s constant (equal to 0.4). As can be 
easily inferred, Pn describes the tendency of particles to be transported by a turbulent flow. When 

5.2>nP  a particle settles down, whereas when 5.2<nP  it can be held in suspension (Middleton 

and Southard, 1984). Actually in the DPDC the solid phase is represented by a population of 
particles, each one characterized by different size, density, drag, i.e. different settling velocity w. 
For this reason Pn represents an average value of the population. 
 

 
Fig. 1. a: scheme of a DPDC moving on an inclined slope. The reference level z0, the shear flow 
thickness zsf and the total flow thickness ztot are shown, together with the concentration profile C(z) 
and average velocity profile u(z). b: picture of a complete DPDC deposit, with the layer of coarse 
lapilli and bombs (A), the laminated layer (B) and the massive thin ash layer (C). 
 
The particle concentration profile determines the flow density profile: 

sgf zCzCz ρρρ )())(1()( +−=     (3) 

where ρg and ρs are the gas and solid particle density, respectively. As the hot gas is lighter than the 
atmosphere, and since the current is density stratified, a DPDC can be divided into a basal portion 
denser than atmosphere (that induces a shear stress on the ground) and an upper portion that is less 
dense than the atmosphere (fig. 1a). The basal portion is the shear current, which is the part of 
major interest for the calculation of the DPDCs impact parameters and hazard assessment. 
Furthermore, this shear current can be described according to the TBLSF theory (Dellino et al. 
2008) and is characterized by the “law of the wall”, which defines the time-averaged velocity 
profile of the current: 
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where ks is the roughness parameter of the substrate. 
In the dense part of the DPDC (i.e. the shear flow), particles settle down from suspension and form 
the bed load, which represents a minor thickness (less than 1%) compared to the total flow height. 
The combination of the stress exerted from the overlying shear flow on the bed load, and the 
continuous sedimentation of particles from suspension, determines a progressive aggradation of 
sediment to form thin tractional laminae (Branney and Kokelaar, 1992; Sulpizio and Dellino, 2008) 
that sum up and lead to the formation of wavy beds, which are the distinguishing features of 
DPDCs deposits (Dellino et al., 2008). The complete facies architecture characterizing the 
stratigraphic sequence of a DPDC deposit is composed of three layers (fig. 1b): (A) a bed of coarse 
lapilli and bombs representing particle entrained at the base of the current (this layer can be lacking, 
especially far away from the volcanic vent); (B) a finely laminated layer originated by the lamina by 
lamina aggradation process described above; (C) a thin massive fine-ash layer representing the fine 
ash deposited during the waning stage of the flow (Dellino et al., 2004, 2008). 
If such a sequence is observed in the field and the beds composing it are described in detail and 
sampled for successive laboratory investigations, it is possible to use PYFLOW to invert deposit 
data and define the fluid dynamic characteristics of the parent current. It is to note that the values 
calculated by PYFLOW represent the current characteristics at the particular location where 
deposits have been recognized in the field. In the case that multiple outcrops of deposits of a DPDC 
are found, by applying PYFLOW to each of them, it would be possible to define the variation of 
pyroclastic density current behavior over the dispersal area. It is to recall that the model is based on 
the TBLSF approximation of DPDCs, thus it is expected to give reliable results only in the case of 
dilute currents. In fact, Dellino et al. (2008) carried out a stress test in which it was shown that, 
upon applying the model to a thick massive deposit related to a highly concentrated flow of the 
Pollena eruption at Vesuvius, the t-Student test (which will be presented below) fails, thus 
indicating that the model is not applicable if samples come from deposits that are not formed from 
dilute density currents. The t-Student test is therefore a check of both the applicability of the 
PYFLOW model and of the reliability of results. 
 
2.2. Shield and suspension-sedimentation criterions 
 
In a DPDC there are particles that are never transported in suspension but can be moved over the 
substrate by the current shear stress (e.g. particles with Pn much higher than 2.5 or particles already 
lying on the ground before the DPDC passage). This phenomenon can be described by the Shield or 
entrainment criterion (Miller et al., 1977) ), which compares the DPDC shear stress to the buoyancy 
force of the coarse particle in the flow: 
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where g is gravity acceleration, ρs1 and d1 the density and diameter of the entrained particle, 
respectively; θ is a constant depending on the particle Reynolds number, which is equal to 0.015 for 
a particle Re number larger than 1000 (Miller et al., 1977). This is generally the case of coarse 
particles moved at the base of DPDCs able to move coarse particle. since, if one considers a clast of 
2 cm diameter (generally clasts moved at the base of pyroclastic density currents are much larger) 
and a shear current with a shear velocity of 1 m s-1 and a kinematic viscosity of 1.6*10-5 Pa s 
(reasonable values even for quite small DPDCs with a fluid phase represented by gases at 300 °C), 
Re is higher than 1000. 
On the other hand, at the limit of transportation by turbulent suspension when 5.2=nP  and, from 

eq. (2), since 4.0=k , it follows that: 
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*uw =     (6) 
This is the suspension-sedimentation criterion (Middleton and Southard, 1984), which means that 
particles stay suspended until their settling velocity is less than flow shear velocity. In other terms, 
deposit particles that are settled from suspension (the laminae-forming bed load) give an indication 
of the current shear velocity, once their terminal velocity is defined. Particle settling velocity w can 
be calculated by the so-called Newton impact law (Dellino et al., 2005): 
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where d is the particle equivalent diameter (i.e. the diameter of the sphere having the same volume 
of the settling particle), Cd is the drag coefficient. Upon combining (6) and (7), it follows that: 
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The shear velocity is actually the shear stress at the base of the current normalized by the flow 
density: 

2
*0 ufρτ =     (9) 

When the stratigraphic sequence described in the previous section is recognized in the field (fig. 1b: 
1) the coarse layer of lapili and bombs moved by shear at the base of the current; 2) the laminated 
layer of ash formed by particles settled from turbulent suspension) it is possible to apply both the 
Shield and the suspension-sedimentation criteria for calculating the flow parameters. However, the 
layer of entrained coarse lapilli or bombs, which is is typical of proximal locations around the 
eruptive vent, is often missing in distal outcrops, thus preventing to use the Shield criterion far away 
from the volcanic vent. In that case, an alternative method based on the hydraulic equivalence of 
particles can be used. The system of equation to be applied in the two cases will be discussed in the 
next sections 2.4 and 2.5. 
 
2.3. Particle analysis for providing input data 
 
In order to use eqs. (5) to (9) and solve for current shear velocity and density, it is necessary to 
measure ρs1 and d1 of the clasts from the basal coarse layer; ρs and d for the particle deposited in the 
laminated layer. In particular, juvenile glassy particles are considered here (which are usually the 
most abundant component of eruptive mixtures), with d representing the equivalent diameter of the 
median size of the juvenile particles grain-size distribution. ρs and d of other components (e.g. 
crystals, lithics) are also needed, as it will be discussed in Section 2.5. Furthermore, shape 
parameters of particles coming from the laminated layer are needed in order to compute the drag 
coefficient Cd. 
For the entrained clast at the base of the current, d1 can be measured by means of a caliper by taking 
the geometric mean between the three axes. Alternatively d1 is calculated as the diameter of the 
equivalent sphere dsph by measuring the weight m and the density ρs1 of the clast.  

3

1
1

6

s
sph

m
dd

πρ
==     (10) 

The clast’s density ρs1 is obtained via a standard picnometer. 
For samples of the laminated layer, a grain-size analysis is performed by hand-sieving in the 
fraction between -6 ϕ and 3 ϕ, and using a Coulter Multisizer for the fraction between 3.5 ϕ and 6.5 
ϕ ( meshd2log−=φ , where dmesh is the mesh size in mm). The grain-size distributions of each 

component are obtained by component analysis: for each grain-size class of the whole sample, the 
different particles are picked by hand for the classes between -6 ϕ and 0 ϕ, while for finer classes a 
counting procedure with the stereomicroscope is employed. By knowing the proportion between the 
single class and the whole sample weight and the number of the particles of each component, the 
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component grain-size distribution is readily obtained (Mele et al., 2011). The median size Mdϕ and 
sorting σϕ are then computed with the grainsize program (which can be requested separately). 
The mass m and the density ρs of particles are also measured by picnometric measurements, in order 
to obtain the diameter of the equivalent sphere dsph (eq. 10) 
Since pyroclastic particles are not well approximated by spheres (Dellino et al., 2005), dsph is 
adjusted by means of the following relationship in order to obtain the equivalent diameter of the 
median size (Dellino et al., 2008): 

φ
φφ
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−=     (11) 

where )( ji
d φφφ −  is the average diameter of the sieve mesh between the i th and j th size classes and 

)( ji
sphd φφ −  is the average diameter of the equivalent sphere between the i th and j th size classes. The 

equivalent diameter of the median size is the most representative value of the size of the particles 
that settle from the suspension (Dellino et al., 2008), as long as the grain-size distribution is 
unimodal, approximating a Gaussian curve. The program grainsize checks for this condition to 
be satisfied via a Chi-squared test. 
The particle shape factor ψ is calculated by applying the procedure explained in Dellino et al. 
(2005). This is a time-consuming procedure, thus in figure 2 particles of different shapes with the 
relative values of ψ are displayed. As a first very crude approximation the user can compare the 
particles with this figure to get an idea of the shape factor. Anyway it’s recommended to measure 
the shape factor whenever possible. Recently Alfano et al. (2011) provided a list of approaches that 
can be used for calculating the particle shape factor: BET, 2D or 3D image analysis are used for 
obtaining shape parameters, and different empirical relationships are applied for calculating 
terminal velocities. Modern devices, like Pharmavision 830® (Malvern Instruments) or Camsizer® 
(Retsch Technology), also provide fast particle size and shape analysis. In a future version of 
PYFLOW, further relationships for particle shape factor and/or terminal velocity (Alfano et al., 
2011) will be likely implemented.  
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Fig. 2: typical pyroclastic particles from different eruptions. For each one the shape factor ψ is 
reported. Redrawn after Mele et al. (2011). 
 
The shape factor has a strong influence on terminal velocity w, as it influences particles drag 
coefficient Cd. Here, the model proposed by Dellino et al. (2005) is used: 

( )
( ) 0412.1

2

36.1
2

3 33.133.169.0













 −

−
=

η
ρρρψ

η

ρρρ

fsf

fsf
d

dg

gd
C     (12) 

where η is gas viscosity. The gas can be represented by steam at 300 °C, with a viscosity of 2*10-5 
Pa s.  
 
2.4. Two-layers model 
 
When the complete fining upward sequence (fig. 1b) is observed in the deposit, it can be inferred 
that during the depositional history of the DPDC, at the interface between the basal and laminated 
layers the coarse particles lying on the substrate (or in the forming deposit) were just moved by the 
shear stress at the base of the current (Dellino et al., 2008). The overlying laminae are formed by 
particle settling from turbulent suspension. The interface between the two layers represent the zone 
of maximum shear stress in the current. The value of shear velocity and density resulting from the 
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solution of the system of equations 5, 8 and 9 thus represent the characteristics of the shear current 

at the considered location where the sample has been collected.  
It is to remark that the parameters on the right side of eq. 8 refer to a population of particles rather 
than single particles, and therefore represent average values over the entire population. The average 
value is the equivalent diameter of the median size d; the range of variation is represented by the 
sorting σϕ of the grain-size distribution. Consequently also the drag coefficient Cd, which is a 
function of d (eq. 12) varies accordingly. In order to better evaluate the range of solutions (shear 
velocity and flow density) of the system of equations 5 and 8, it is convenient to group the 
parameters having a range of variation (d and Cd) in a ratio Cd/d. Upon rearranging the equations: 
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A range of values is calculated as a function of a realistic range of flow density ρf. As stated in 
Section 1, the shear current is denser than atmosphere; furthermore, the particle volumetric 
concentration is expected to be limited to a few percent, in order to conform with the dilute current 
assumption. Thus, a reasonable range of flow density is between 2 and 100 kg m-3. The validity of 
this assumption has been discussed in detail in Dellino et al. (2008). 
The values of Cd/d corresponding to realistic flow density values are named Cd/d(2 kg m-3) and 
Cd/d(100 kg m-3). By isolating ρf in eq. 5 and substituting it into (13), the ratio Cd/d as a function of 
the squared shear velocity is obtained: 
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Substituting the values of Cd/d(2 kg m-3) and Cd/d(100 kg m-3) into (14), the corresponding values of 

the squared shear velocity 2*u (2 kg m-3) and 2
*u (100 kg m-3) are calculated. By using the theorem of 

the average value of a function, the average model ratio of Cd/d is found: 
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With the same approach the average particle drag coefficient Cd (eq. 12) can be calculated in the 2-
100 kg m-3 flow density range: 
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Cdavg can be considered to be a good estimate of the population of particles settling from turbulent 
suspension if the grain-size distribution approximates a Gaussian curve, which is usually the case of 
this kind of samples and is verified in the auxiliary program grainsize (see Section 4.2.1-a). A 
model value for the particles diameter can be obtained by the following relationship: 

avg
d

C
avgC

d
d

d=mod     (17) 

This value can be compared with that measured from the sample d by means of a statistical Student 
t-test, by defining the t variable as: 
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where the model value dmod represents the population mean of the test and the value of the 
experimental data d represents the sample mean. The standard deviation σ is the sorting of the 
grain-size distribution σϕ. One should note that all the size values in (18) are expressed in ϕ units in 
order to be compatible with σϕ. The degrees of freedom n are equal to nclasses - 1, where nclasses is the 
number of size classes in the grain-size distribution. At this point PYFLOW performs a two-tails 
test; by default the significance level of the statistical test is set to 0.05, but the user can set a 
different value. If the t-test succeeds, dmod is an appropriate model of the experimental data, 
meaning that the initial assumption that 2 kg m-3 < ρf < 100 kg m-3 is reasonable and the model 
results are a significative solution of actual deposit data. The t value at the significant level of 0.05 
is known and tabulated but, as PYFLOW allows one to change the significance level, the code 
searches for the t value from the cumulative t distribution: 
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where B is the Beta function. Eq. 19 is solved with Brent's method of bisection (Press et al., 1996). 
After the t-test, model results are normalized to experimental data. By substituting Cd/davg into eq. 
13 an average model density ρf,mod is obtained. Next, the settling velocity of the particles calculated 
with dmod and the experimental d are equated: 
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In (20) the only unknown is ρf,norm, which is the flow density normalized to the experimental data. 
This density is substituted in eq. (13) to get the normalized ratio Cd/dnorm that is in turn used in eq. 

14 to get the normalized squared shear velocity normu2
*  . The shear stress associated to normu2

*  and 

ρf,norm are then used in (9) to calculate the average value of the shear stress τavg. 
Once the average values of shear velocity, flow density and shear stress are known, PYFLOW 
defines an interval of variation equal to ±1 unit of standard deviation around the average, 
corresponding to the maximum and minimum acceptable model solutions, respectively. In a 
Gaussian distribution the range enclosed in this interval corresponds to a probability of 68%, 34% 
on the left and 34% on the right of the average. This range is considered as covering a significant 
spectrum of model solutions for the obtainment of a statistic range of impact parameters to be used 
for hazard assessment. By using this standard, PYFLOW calculates the interval by subdividing the 
total area subtended by the function of Cd/d vs. 2

*u  into two parts, one on the left and one on the 
right side of the average value. If one assigns to each part 100% of probability and calculates the 
total area on that part with the following equation 
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it turns out that 68% of this quantity represents the Cd/d value corresponding to 34% of the 
probability to the left of the average, Cd/dleft. With the same approach the right value Cd/dright is 
calculated. Upon substituting Cd/dleft and Cd/dright in eq. 14 the corresponding squared shear 
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velocities, i.e. min
2
*u  and max

2
*u  respectively, are obtained. Again Brent’s method of bisection is 

used for solving this non-linear equation. Using these values together with the corresponding Cd/d 
values, the associated minimum and maximum densities (ρf,min and ρf,max) and the minimum and 
maximum shear stresses (τmin and τmax).  
 
2.5. Two-components model 
 
As previously stated, the complete sequence of layers involving both the coarse particles moved at 
the base (which are generally found in proximal locations, Dellino et al. (2008)), and the overlying 
laminated layer can be not found in the deposit stratigraphy. Frequently, the coarse layer (A in fig. 
1b) is lacking from the bed-set (especially in distal localities), thus preventing the application of the 
Shield criterion (eq. 5). Anyway it is still possible to apply the model even if only the laminated 
layer is present (B in fig. 1b). The laminated layer is composed of different types of particles 
(components) having different densities, grain sizes and shapes. Since all the components in a 
lamina are deposited at the same flow conditions and the same settling velocity, one may assume 
that aerodynamic equivalence exists between the different components. By considering, for 
example, juvenile particles and loose crystals, the following equations hold: 

xxww =     (22) 
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where the subscript xx refer to crystals while no subscript is used for the juvenile parameters, in 
agreement to the previous section. 
By simplifying eq. 23, the ratio Cd/d can be obtained for this method: 
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and an equation of Cd/d as a function of 2
*u  is obtained: 
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Eq. 24 and 25 play the same role as eq. 13 and 14 of the two layer method of Section 2.4. The 
procedure then follows the same steps. It is to note that also lithic components can be used for 
solving the system of equations, assuming that a careful estimation of their physical characteristics 
is made, which sometimes is more difficult than for ashy glass grains or crystals, since lithics can 
show a wider variation of density and shape characteristics. 
 
2.6. Flow stratification model 
 
The density of the shear current obtained with any of the two model discussed so far is the average 
value of the density profile from the base of the current to the height at which flow density becomes 
equal to atmospheric density (top of the shear current). Actually, it is a function of particle 
concentration and gas density (eq. 3). From (3), upon assuming a gas density, the average particle 
concentration C in the shear current is readily obtained. If one assumes that the particle settling rate 
is constant during the formation of the whole laminated layer, the total height of the flow ztot can be 
obtained by the ratio between C and the laminated layer total thickness zlam. Is is worthily noting 
that the average concentration varies according to the flow density calculated previously, this in 
turn affects the range of variation of the flow thickness ztot.  
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The shear current is composed of gas and a mixture of particles, in which those with Pn = 2.5 are at 
settling condition. Finer particles are held in suspension by turbulent stress and contribute to the 
concentration profile C(z), but their average Rouse number Pn,susp, which is lower than 2.5, is still 
unknown. Also, the thickness of the shear flow zsf is unknown. In order to get these two unknowns, 
a system of two equations can be written: 

( )


























 −
−

−+=
suspnP

sf

sftot

tot
gsgatm z

zz

zz

z
C

,

0

0
0ρρρρ     (26) 

( )∫ 




















 −
−

−+
−

=

sf
suspn

z

z

P

tot

tot
gsg

sf
f dz

z

zz

zz

z
C

zz
0

,

0

0
0

0

1 ρρρρ     (27) 

The first equation states that the atmospheric density is reached at the top of the shear flow zsf; the 
second one defines the average flow density calculated between z0 and zsf. The solutions are seeked 
via the iterative Newton-Raphson method for non-linear systems of equations. This system of 
equation is solved in two different steps: 
1) first, by setting z0 = zlam, and considering the average solutions of ztot and ρf, the system is solved 
to find the average shear flow thickness zsf,avg and the average solution of the Rouse number 
Pn,susp,avg. After the average values of the Rouse number and of the shear flow thickness have been 
determined, by knowing the average shear stress and flow density found previously, the slope α of 
the substrate over which the DPDC was moving can be calculated by: 

( ) sfatmf zg αρρτ sin−=     (28) 

2) Once the average values of the shear flow thickness, the Rouse number and the slope are found, 
from the same system it is possible to calculate the maximum and the minimum solution of z0 and 
Pn,susp. For the maximum solutions (z0,max and Pn,susp,max), the flow density is set equal to the 
previously calculated maximum solution ρf,max. Then, the corresponding shear flow thickness is 
calculated by (28). Since at the maximum density corresponds the minimum shear velocity (Dellino 
et al. 2008), τ = τmin when ρf = ρf,max. Thus, the shear flow thickness in this case is the minimum 
value, zsf,min. Also the total flow thickness is set equal to its maximum solution. For the minimum 
solutions (z0,min and Pn,susp,min) the procedure is the same but the opposite values are used. 
The atmospheric density is set equal to 1.22 kg m-3, and for ρg the density of steam at 300 °C is 
used, as it is considered as a reasonable value for DPDCs (Dellino et al., 2008). 
It is now possible to create the profiles of the DPDC parameters; for each variable, an average, 
maximum and minimum solution profile is created. Concentration, density, velocity and dynamic 
pressure profiles are calculated by using (1), (3) and (4), respectively. It is now possible to calculate 
the dynamic pressure profile: 

( ) ( ) )(
2

1 2 zuzzP fdyn ρ=       (29) 

PYFLOW calculates and stores the profiles in separate output files. Furthermore it calculates 
specific dynamic pressures at different heights (10 m by default and at user requested heights), i.e. 
the dynamic pressure averaged over the height: 
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where zsp is the chosen height. Also in this case the parameter is calculated for the average, 
maximum and minimum solutions. This is an important choice for hazard assessment: the default 
value of 10 m is typical of small-medium buildings; PYFLOW allows to select other heights, which 
can be more suitable for the hazard assessment of a specific area. 
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2.7. Probability functions of the impact parameters 
 
For each fluid dynamic variable of the DPDC, PYFLOW calculates three solutions: average 
(corresponding to the 50th percentile), maximum (68th percentile) and minimum (34th percentile). 
From these values it builds probability functions with the aim to calculate, for each studied DPDC, 
the value of the variable (e.g. dynamic pressure, particle concentration at a specific height, etc.) at 
the percentile of interest. 
As a reference probability distribution, PYFLOW employs the Gaussian distribution: 

( )
( )
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2

2

1 σ
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πσ

−−
=

y

eyf     (31) 

This choice is based both on the fact that the general model starts from a statistical test (see the 
Student-t test illustrated in section 2.4) on grain size data, which generally show a Gaussian 
tendency when expressed in phi units, and also that generally continuous (random) physical 
variables show a Gaussian tendency. In order to allow the variables solution distribution to conform 
to the standardized Gaussian distribution, first the 84th  and 16th percentile values where rendered 
symmetrical around the mean. By indicating the average, maximum and minimum solutions with µ, 
max and min, respectively, the best value for the symmetrization parameter ms is searched for 
satisfying the following relationship: 

msmsmsms minmax −=− µµ      (32) 
Eq. 32 has two solutions, among which 0 (the trivial solution) is discarded. PYFLOW then searches 
for the other solution with Brent's method of bisection (Press et al., 1996).  The new distribution 
parameters can be calculated by using ms: 

ms
simm µµ =     (33) 

msmsmsms
simm minmax −=−= µµσ     (34) 

where µsimm and σsimm are the median and the standard deviation of the symmetrized probability 
function, respectively. Using these parameters it is possible to calculate the variable value y linked 
to a desired probability p(y) via the standardized normal distribution Z (µ = 0, σ = 1). Indeed, given 
a probability, the corresponding standardized variable Zstd is readily obtained by the tabulated 
values. Actually PYFLOW uses the cumulative distribution function for the Z distribution: 

( ) 






 +=
2

1
2

1 std
std

Z
erfZp      (35) 

where erf is the error function. Once Zstd is found (again by using the Brent’s method), and given 
the standardization formula: 

simm

simm
std

y
Z

σ
µ−=     (36) 

the value of the variable is readily obtained: 

simmstdsimmZy µσ +=     (37) 

The output of PYFLOW provides the symmetrization parameter ms, µsimm and σsimm for each 
variable. Then it gives out the variables values at the desired probabilities, which the user provides 
in the command line when requested. The detailed procedure will be discussed in Section 4.2. 
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3. Solution algorithm  
 
PYFLOW is structured in different, separate, subroutines called by the main program main. The 
basic program structure is shown in fig. 3. 
 

 
Fig. 3: simplified flowchart of PYFLOW. 
 
 
The main routine defines the variables, open results and log files (results.dat, 
con_profile.dat, dens_profile.dat, vel_profile.dat, log.dat) and reads the 
input file input. Input data can be read alternatively from command lines or from an input file, 
that must be structured as explained in Section 4.2.1. Depending on the user’s choice (i.e. available 
data) PYFLOW calls the routine twolayer or twocomponent (see Section 2.4 and 2.5, 
respectively). The transfer of input data and results between the main block and the subroutines is 
performed via common block statements. main writes the results in the results.dat file and 
then calls the routine profiles (Section 2.6), which calculates the vertical profile of the fluid-
dynamic variables (dynamic pressure, velocity, etc.) and writes the results in the corresponding data 
files. Finally the routine probfunctions is invoked for defining the probability functions as 
explained in Section 2.7.  
There are other external routines invoked several times from the program. The routine testt 
performs the t-Student test of the model solution (Section 2.4); qtrap calculates numerically the 
definite integral of a function with the trapezoidal rule (Press et al., 1996); zbrent is the function 
that solves the non-linear equations via the Brent’s method (Press et al., 1996), invoked in testt, 
twolayer, twocomponent and probfunctions routines. newt is the routine that solves the 
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system of non-linear equations (26) - (27) with the Newton-Raphson iterative method (Press et al., 
1996); this routine uses also the module fminln. 
Other modules are necessary for compiling and running PYFLOW. inputdata stores the used 
constants (e.g. gravitational acceleration, gas viscosity, etc.) and defines the variables for the input 
data. The modules nrtype, nrutil and nr are available in the literature (Press et al., 1996) and 
invoked from the numerical recipes routines (e.g. newt); they define data types and stores libraries 
of functions (e.g. the Beta function used in (19)). 
Typical computational times range between 5 to 10 minutes, the most time-consuming routine being 
newt, which solves iteratively the system of equations (26) and (27). 
 
4. Program setup and execution 
 
4.1. Installation 
 
The package contains all the routines presented in the previous section, each one in a separate .f90 
file. The user has to compile the Fortran files and build the executable. In order to simplify this 
operation, a script file (named Makefile) is also included in the package. The script has to be 
invoked with the freeware Gnu Make software. The user should only run the Make program in the 
folder in which all the source files and the script are stored by typing make. The command make 
clean deletes some files created during the compilation: .mod and .o. 
 
4.1.1. Linux 
 
In Linux operating systems Make should be installed by default, otherwise the user can download 
and install the program with the package manager specific of the OS or by typing the proper 
command on the command shell (e.g. apt-get install for Ubuntu, yum for Fedora, etc.). The 
command which make gives information on whether and where Make is installed. 
The Makefile is written assuming that Gfortran compiler is used. If this is not the case, the user can 
edit the second line of the Makefile by replacing "gfortran" with the proper command invoking the 
desired compiler.  
 
4.1.2. Windows and Mac OS 
 
For Windows and Mac operating systems the user can find the make executable on Internet. For 
these OSs only the executable is available, which has to be placed in the same folder where the 
Makefile script and the source code are. The other possibility is to work with a Linux emulator (e.g. 
Cygwin for Windows). 
 
4.2. Execution 
 
The compilation produces the executable file pyflow.exe. The execution is launched by typing 
the proper command on the command prompt (./pyflow.exe for Linux or Linux emulators for 
Windows and Mac OS, pyflow.exe or simply pyflow in the Windows command prompt). 
Once launched, the program asks for the model (two layer or two components) to be used (fig. 4). 
The user should type 1 for two layer model, 2 for two component model. Any other type will cause 
an error message to be displayed, then the user can choose again.  
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Fig. 4. Screenshot of the command prompt during PYFLOW execution. Here the two components 
model is chosen. 
 
After this choice, the programs asks for the method of data input (fig. 4). By typing 1 the program 
reads the input data file (see next section), while 2 lets the program to ask the data one by one with 
the keyboard. The first choice is recommended, as with the second possibility the chance to make 
mistakes is way higher. Anyway the program always displays a data summary that the user can 
check, and asks if the provided input data are correct (fig. 5). 
 

 
Fig. 5. Screenshot of the command prompt during PYFLOW execution. Here the input data are 
listed for checking. The program asks if the data are correct before to proceed.  
 
If the user confirms that data are correct (by typing 1), the calculations start. First temporary results 
are displayed, together with the residuals of the calculations performed via iterative methods (fig. 
6): 
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Fig. 6. Screenshot of the command prompt during PYFLOW execution. Here the first results are 
displayed, together with the residuals of the calculation of the t value at a given level of significance 
(eq. 19). 
 
The name of the chosen method is again reported; then the values of Cdavg for the first component 
(here Cd1, using an equation analogous to eq. 16), the ratios Cd/d at the two different flow densities 
(Cd/d(2 kg/m^3) and Cd/d(2 kg/m^3), eq. 24), the values of the corresponding squared shear 
velocities (ush^2(2 kg/m^3) and ush^2(2 kg/m^3), eq. 25), the average Cd/d ratio (Cd/d avg, using an 
equation analogous to eq. 15), the average drag coefficient of the second component (Cd2), the 
model diameter (dmod) of the second component in meters (by default the second component is the 
less dense one, d2mod (m), eq. 17 converted in meters) and the model diameter of the second 
component in phi units (d2mod (phi), eq. 17) are displayed. Afterwards the t-Student test is 
performed, for which the t value at the level of significance of 0.05 is calculated by eq. 19 with the 
Brent’s method. The residuals are displayed, as the convergence criterion is based on two 
parameters (see Press et al. (1996) for details): one has to be equal to 0 (second column), or the 
other must be less than the selected tolerance value (first column). By default the tolerance is set to 
about 10-15 for the Brent’s method; the user can change this value by editing the source code in 
zbrent.f90 file. Once the t tabulated value is calculated, this is compared to the calculated value 
(eq. 18) (which is reported as t calculated) and, if this is less than the tabulated value, the test 
succeeds and the message Test t OK is displayed. If not, the user is asked for either reducing the 
level of significance and retry (thus reducing the significance of the results) or stop the calculations. 
After this fundamental step, the calculations continue and the model density ρf,mod (Denmod in fig. 
7), the flow density normalized to real data ρf,norm (Den norm), Cd/dnorm, the normalized squared 
shear velocity (ush^2 norm) (see Section 2.4) are displayed. 
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Fig. 7. Screenshot of the command prompt during PYFLOW execution. Here data normalized to 
real data and first maximum and minimum solutions for shear velocity, density, concentration and 
total flow thickness are shown. 
 
As previously explained, for the calculation of squared shear velocity Brent’s method is used, thus 
again the residuals are shown. Once the maximum and minimum solutions for the squared shear 
velocity are found, the corresponding Cd/d values (Cd/d(ush^2 min), Cd/d(ush^2 max)) and the 
associated minimum and maximum densities (Den(Cd/d(ush^2 min)) and Den(Cd/d(ush^2 max))) 
are calculated and written. With the method explained in Section 2.6 the particle concentration (the 
solutions corresponding to different percentiles, C 50th, C 84th, C 16th) and the corresponding total 
flow height (Htot 50th, Htot 84th, Htot 16th) are computed. After these parameters are calculated, it 
is possible to solve the system of equations 26 and 27 with the Newton-Raphson iterative method. 
During the iterations the code displays the calculation residuals. The execution of the Newton-
Raphson iterations stops when one of four residuals calculated in the newt subroutine is less than a 
fixed value (Press et al., 1996). These residuals are displayed continuously during the iterations; 
they are named res1, res2, res3, res4. The first two are actually identical, but calculated in 
different parts of the Newton-Raphson routine. The conditions to be satisfied at convergence are, 
sequentially: 
1) res1 < TOLF = 10-4 
2) res2 < TOLF = 10-4 
3) res3 < TOLMIN = 10-6 
4) res4 < TOLX = machine dependent value 
In fig. 8 a part of the residuals displayed during the calculation of the average Pn,susp (Pnsusp avg), α 
(Slope (°)) and z0 (z0avg) is shown: 
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Fig. 8. Screenshot of the command prompt during PYFLOW execution. Here the residuals of the 
calculations of the average values of Rouse number of the particle in turbulent suspension Pn,susp, 
reference height z0 and slope α are shown. Results are then displayed when the solution converged. 
 
The same output is displayed for the maximum and minimum solutions of Pn,susp (Pnsusp max, 
Pnsusp min) and z0 (z0max, z0max). 
As already stated in Section 2.6 an average value of the dynamic pressure integrated over an height 
of 10 m for each solution (average, maximum and minimum) is calculated by default. The code asks 
the user to provide other heights if wanted (fig. 9). The program also calculates the particle 
volumetric concentration at z = 2 m and the user can choose another height if needed. The input of 
the additional heights can be stopped by typing “stop” on the keyboard; any other input will let the 
program to ask for another value. 
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Fig. 9. Screenshot of the command prompt during PYFLOW execution. Here the user is asked to 
provide other heights for the calculation of the average dynamic pressure and particle volumetric 
concentration, if wanted.  
 
After these inputs, the program shows a summary of the results (fig. 10): 
 

 
Fig. 10. Screenshot of the command prompt during PYFLOW execution. Here the summary of the 
results is reported. 
 
Average, maximum and minimum solutions for flow density ρf, total flow thickness ztot, shear flow 
thickness zsf, shear velocity u*, shear stress τ, average specific dynamic pressure (10 m) Pdyn,sp and 
particle volumetric concentration at 2 m C are listed. Below the user requested outputs are 
displayed, with the chosen height (e.g. z = 5 m) and the solutions (average, maximum and 
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minimum, together with the effective percentiles, as sometimes the 84th percentile solution is not 
the maximum solution due to the crossing of the profile curves, see Section 4.2.4). After these 
outputs, the program displays also a summary of the t-Student test results (fig. 11). 
Once all the solutions have been found, PYFLOW starts to build the probability functions of the 
impact parameters (Section 2.7). Eq. 32 is solved for calculating the symmetrization parameter ms 
for the specific dynamic pressure at 10 m and the particle volumetric concentration at 2 m; 
furthermore, it is calculated also for the user-requested outputs. An example of the temporary 
results displayed on the screen is shown in fig. 11: 
 

 

 
Fig. 11. Screenshot of the command prompt during PYFLOW execution. Here the summary of the 
t-Student test, the residuals of m calculation and the value of ms, µsimm and σsimm are listed. 
 
The symmetrization exponent is searched on the right and on the left of the trivial solution 0; if the 
solution cannot be found on one side of 0, it searches it on the other side. In very rare cases there is 
no solution other than 0, thus preventing to calculating the probability functions. Once the 
symmetrization exponent is calculated, it is shown, together with the new median µsimm and standard 
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deviation σsimm of the symmetrized distribution. The output on fig.11 is the same also for the particle 
concentration at 2 m and for the user requested height.  
Once the probability functions have been built, the user can calculate the value of the impact 
parameters at the desired percentile. Two examples are shown in fig. 12. 
 

 
Fig. 12. Screenshot of the command prompt during PYFLOW execution. Here the function values 
at the desired percentile are calculated. 
 
After the user chooses to calculate the function values, the probability function can be selected by 
typing the corresponding number. In fig. 12 the specific dynamic pressure at 10 m is chosen; then, 
the user should write the percentile and the program calculate the corresponding Zstd value (eq. 35) 
while it displays the residuals. Finally the function values is calculated by (37) and shown and, if 
the user doesn’t want to calculate other function values, the program stops. 
 
4.2.1. The input data file 
 
The user can provide the input data via command lines or by editing the input data file, named 
input. The file must be structured as in the following example: 
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2570 
0.08 
3283 
0.4 
1.71 
0.559 
14 
1750 
1.286 
1.54 
0.47 
18 
0.05 
0.2 
0 
0.75 
0.04 
 
The user can follow the instructions reported in the file Input_instructions.txt, in which 
the meaning of each line is explained. A further explanation follows here. 
Density of the entrained particle (kg/m^3): ρs1. This value is ignored by the 
code if the two components method is used. Anyway, and hereafter, the user must write a number 
even if the value is ignored, in order to not alter the structure of the input file that PYFLOW can 
read in this version. 
Diameter of the entrained particle (mm): d1. Together with the previous value, 
this is used in the two layer method and it is ignored if the other method is chosen.  
First component density (kg/m^3): put the density of the first component if the two 
components method is used, otherwise the code ignores this value. PYFLOW stores the first 
component as the denser one, thus the user should put the parameters of the denser component in 
the “first component” part of the input file. Anyway PYFLOW checks if this condition is satisfied, 
otherwise it exchanges the values.  
First component particle equivalent diameter of the median size 
(mm): put the particle equivalent diameter of the median size of the grain-size distribution in mm 
(not in phi units!). 
First component sorting particle grainsize distribution (phi): this 
value must be entered in phi units.   
First component particle shape factor (-): particle shape factor of the first 
component calculated with the procedure explained in Dellino et al. (2005).   
First component classes number of the grainsize distribution (-): 
number of the classes in the grain-size distribution of the first component.    
Second component density (kg/m^3): the second component is the less dense 
component when the two components model is used; if the two layer model is used, it is the 
component for which the suspension-sedimentation criterion is applied.   
Second component particle equivalent diameter of the median size 
(mm): as for the first component.   
Second component sorting particle grainsize distribution (phi): as for 
the first component.   
Second component particle shape factor (-): as for the first component.     
Second component classes number of the grainsize distribution (-): 
as for the first component.   
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Significance level t-test: significance level for the t-Student test. A two-tailed test is 
performed, but the user must write the total significance level (i.e. of both the tails). 
Layer thickness (m): thickness of the laminated layer zlam of the DPDC deposit. 
Sublayer thickness (m): thickness of the sublayer z0; if it’s not possible to evaluate it on 
the deposit, the user must write “0” and PYFLOW set z0 equal to the diameter of the particles of the 
less dense component (e.g. juvenile). 
Particle concentration in the layer (-): usually C0 is assumed to be 0.75, but 
it’s possible to set different values. 
Substrate roughness (m): the substrate roughness ks can be measured on the field; for 
example it can be taken as half of the diameter of the coarse particles lying on the substrate or that 
are at onset of entrainment.  
 
4.2.1.a grainsize program  
 
The grainsize program is an additional utility that can be requested separately. The program 
calculates the median Mdϕ and sorting σϕ of a given grain-size distribution. It also allows to carry 
out a Chi-squared test for checking the compatibility of the grain-size distribution with a normal 
Gaussian curve.   
The input data must be entered via an input file, named input_grainsize.dat that has to be 
arranged as explained in the file Input_instructions_grainsize.txt, which is reported 
below: 
 
Phi interval: the interval of the grain-size distribution in phi units (e.g. 0.5, 1, etc.). 
Phi min: the minimum phi value for which the weight is larger than 0. 
Phi max: the maximum phi value for which the weight is larger than 0. 
Hereafter write the weights for each class, in one column 
**********Caution! Use . not ,!!!**********************: grain-size 
can read real numbers with the decimal point “.”; “,” is not permitted. 
 
Below an example of an edited input_grainsize.dat file 
 
0.5 
-2.5 
5 
0.26 
0.39 
0.33 
0.19 
0.19 
0.16 
0.11 
0.09 
0.07 
0.07 
0.07 
0.17 
0.25 
0.20 
0.12 
0.02 
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The distribution has a phi step (interval) equal to 0.5; it starts from -2.5 phi and ends at 5 phi. Then 
the weights are listed. 
Once the program has been launched, it reads the input data and displays them as shown in fig. 13: 
 

 
Fig. 13. Screenshot of the command prompt during grainsize execution. Here the input data are 
listed. 
 
The input data are listed in four columns: weight in grams (Wt. (g)), weight fraction (Wt.%), 
fractional cumulative weight (Fr.Cum.Wt) and cumulative weight in % (Cum.Wt.%).  
Then the program calculates the median Mdϕ and sorting σϕ; the median corresponds to the 50th 
percentile of the distribution (ϕ50), while the sorting is defined as in Inman (1952): 

2
1684 φφσ φ

−=     (38) 

where ϕ84 and ϕ16 are the 84th and 16th percentile, respectively. As the reader can readily see in the 
last column of fig. 13, an interpolation procedure is necessary for finding the ϕ value corresponding 
to a definite percentile. This is possible by using a known probability distribution; in this case a 
standardized normal distribution is used (eq. 35), although it is assumed that the experimental 
distribution is not significantly different from a Gaussian distribution (see below). Let’s consider 
the 50th percentile; the program searches the ϕ interval in which the 50th percentile lies (between 
ϕinf  and ϕsup, to which the corresponding cumulative weight fractions are wt(ϕinf) and wt(ϕsup) ). By 
solving eq. 35, the Zstd values corresponding to wt(ϕinf) and wt(ϕsup) (Zstd,inf and Zstd,sup) are defined; 
then the Zstd values corresponding to the percentile is found (Zstd,pct). In grainsize eq. 35 is 
solved with the numerical recipe rtflsp, which uses the false position method (Press et al., 1996). 
After these parameters have been calculated, it is possible to calculate ϕ50 by interpolating the 
extreme values with a straight line, whose slope is: 

infsup

,inf,sup

φφφ −
−

= stdstd ZZ
m     (39) 

Then ϕ50 is readily obtained: 
( )inf,50,inf50 stdstd ZZm −+= φφφ      (40) 

where Zstd,50 is the Zstd value corresponding to the 50th percentile. 
The residuals of the calculation of the various Zstd are continuously displayed on the command 
prompt (fig. 14). 
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Fig. 14. Screenshot of the command prompt during grainsize execution. Here the residuals of 
the Zstd values for the calculation of ϕ50 are displayed. 
 
The program then asks to choose whether to perform the Chi-squared test or not and if yes the 
program asks for the significance level (fig. 15). It is recommended to perform the Chi-squared test 
χ2, in order to validate or not the resulting median and sorting, which are based on the assumption 
that the measured grain-size distribution is not different from a Gaussian curve. If the test fails, the 
program provides anyway the median and sorting value, but the user should be aware that these 
value are not good estimate of the central tendency parameters.  The χ value at a desired 
significance level is calculated with the probability density formula: 

( ) ( )
212

2 22

1 xj
jj ex

j
f −−

Γ
=χ     (41) 

where k is the degrees of freedom and Γ is the Gamma function. For details of the Chi-squared test 
the user can refer to Davies (1986). Eq. (41) is solved with the false position method and residuals 
are displayed (fig. 15). 
 

 
Fig. 15. Screenshot of the command prompt during grainsize execution. Here the Chi-squared 
choice is shown, together with the χ calculation residuals. 
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The program then displays the summarizing table of the test (ztest, Oj, Ej, (Oj-Ej)^2/Ej, see Davies 
(1986)) and writes the result of the test (fig. 16). In this case the calculated χ is larger than the 
tabulated value, thus the test fails. Consequently the program informs the user that the distribution 
is significantly different from a normal distribution. 
 

 
Fig. 16. Screenshot of the command prompt during grainsize execution. Here the Chi-squared 
summary and results, together with the median (phi50) and sorting (sigma) values are displayed. 
 
The median ϕ50 (phi50), together with ϕ84 (phi84) and ϕ16 (phi16) are listed, with the corresponding 
sizes in mm (d50, d84 and d16). The sorting σϕ is only in phi units.  
All the outputs displayed in the command prompt during the execution are saved in a file named 
log.dat. 
 
4.2.3. The log file 
 
As explained in Section 4.2, PYFLOW continuously displays temporary results and residuals of 
numerical calculations. At the end of the execution it is usually not possible to go back to the first 
output messages, due to the space limitations of the prompt command shell. For this reason, all the 
output are stored in a log file, named log.dat, which can be examined by the user at any time.  
 
4.2.4. Output files 
 
PYFLOW opens the following output files: 

- results.dat 
- log.dat 
- conc_profile.dat 
- pdyn_profile.dat 
- vel_profile.dat 
- dens_profile.dat 

 
results.dat reports the same results as shown in fig. 9, with the addition of the part relative to 
the probability functions; an example of this part is shown below. 
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 ###### PROBABILITY FUNCTIONS ###### 
 10 m dynamic pressure probability function 
Symmetrization exponent  -0.452 
Median  0.1232E+00 
Standard deviation  0.7966E-01 
 
 
 2 m particle concentration probability function 
Symmetrization exponent   0.118 
Median  0.3272E+00 
Standard deviation  0.9491E-01 
 
 
  5.00 dynamic pressure probability function 
Symmetrization exponent  -0.378 
Median  0.1684E+00 
Standard deviation  0.9924E-01 
 
 
  1.50 particle concentration probability function 
Symmetrization exponent   0.132 
Median  0.3015E+00 
Standard deviation  0.8936E-01 
 
 
 ###### CALCULATION OF FUNCTION VALUES ###### 
 Dynamic pressure 10 m 
Percentile       0.900 
Function value     5101.9745 
 ###### CALCULATION OF FUNCTION VALUES ###### 
  1.50  Particle concentration 
Percentile       0.600 
Function value    0.1970E-03 
 
 
The profiles files are organized in four columns. The first column is the height z in m, with a step-
size of 0.01 m. To each height, the corresponding variable values for the three solutions (50th, 84th, 
16th percentile) are written in the next three columns. Here a part of the file pdyn_profile.dat 
is given as an example: 
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Fig. 17. Screenshot of the pdyn_profile.dat. 
 
Usually 50th, 84th and 16th percentiles correspond to the average, maximum and minimum 
solutions, but this is not always the case, especially in the basal part of the flow. Sometimes, at the 
chosen height, the 84th percentile does not show an higher value than the 50th or the 16th 
percentiles. This is due to the different gradient of the profiles of the different solutions, which 
intersect each other at some height, and to the shear stress solutions, which are always very close 
(fig. 10) and from which the subsequent solutions follow. This is the reason why the three solutions 
are named with the percentile values. 
The file is organized in a way that it is easy to draw plots variable vs. height with the most used 
programs (e.g. Microsoft Excel, Grapher, Kaleidagraph, GnuPlot, etc.). Two examples drawn with 
Grapher are shown in fig. 18 and 19. 
 

 
Fig. 18. Velocity u vs. height z. The black line is the 50th percentile solution, the blue and red lines 
are the 16th and 84th percentile solutions, respectively. 
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Fig. 19. Dynamic pressure Pdyn vs. height z. The black line is the 50th percentile solution, the blue 
and red lines are the 16th and 84th percentile solutions, respectively. 
 
The velocity curves (fig. 18) follow a logarithmic trend, in agreement to the law of the wall (eq. 4). 
The dynamic pressure curves (fig. 19) show a steep gradient in the very basal part of the current, 
then the pressure decreases gently with the height. This is the expected strongly stratified 
characteristic of DPDCs.  
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Symbol notation 
 
Latin 
Symbol Description Units 
B Beta function - 
C Particle volumetric concentration - 
Cd Drag coefficient - 
d Particle equivalent diameter mm 
dmesh Mesh size in the hand-sieving analysis mm 
erf Error function - 
g Gravitational acceleration m s-2 

j Degrees of freedom in the Chi-squared test - 
k Von Karman’s constant - 
ks Roughness parameter of the substrate m 
m Mass kg 
max Maximum value of the variable for the probability function Varying 
Mdϕ  Median size ϕ 
min Minimum value of the variable for the probability function Varying 
ms Symmetrization parameter - 
mϕ Slope of the grain-size interpolation function - 
n Degrees of freedom in the t-Student test - 
nclasses Number of size classes in the grain-size distribution - 
p Probability - 
Pdyn Dynamic pressure Pa 
Pn Average Rouse number - 
Re Reynolds number - 
t t-Student distribution parameter - 
u Flow velocity m s-1 

u* Shear velocity m s-1 

u’ Fluctuating velocity in the stream (x) direction m s-1 

w Particle terminal velocity m s-1 

w’ Fluctuating velocity in the vertical (z) direction m s-1 
wt Weight fraction % 
x Stream direction m 
y Variable value in the probability function Varying 
z Vertical direction m 
Z Standard normal distribution - 
zlam Thickness of the laminated layer in the DPDC deposit m 
zsf Shear flow thickness m 
zsf Shear flow thickness m 
Zstd Standardized variable - 
ztot Total flow thickness of the DPDC m 
 
Greek 
Symbol Description Units 
α Slope of the substrate ° 
Γ Gamma function - 
η Gas viscosity Pa s 

θ Shield constant - 
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µ Median - 
ρ Density kg m-3 

σ Standard deviation - 
σϕ Sorting ϕ 
τ Shear stress  Pa 
ϕ16 16th percentile of the grain-size distribution ϕ 
ϕ50 50th percentile of the grain-size distribution ϕ 
ϕ84 84th percentile of the grain-size distribution ϕ 
χ Chi distribution - 
Ψ Particle shape factor - 
 
Subscripts 
Symbol Description 
atm Atmosphere 
avg Average value 
f Flow 
g Gas phase 
max Maximum value 
min Minimum value 
mod Model value 
norm Value normalized to real data 
s Solid phase (particles) 
simm Simmetryzed parameters 
sp Value specific to a certain height 
sph Equivalent sphere 
xx Crystals 
0 Reference level in the DPDC 
1 Entrained particle 
 


