SOLVING FOR THE GRAVITY FIELD IN COMSOL

Gilda Currenti

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania

The gravity change, related to density redistribution, can be calculated by solving the following Poisson's differential equation for the gravitational potential u :

$$
\begin{equation*}
\nabla^{2} u=-4 \pi G \Delta \rho(x, y, z) \tag{1}
\end{equation*}
$$

where G denotes the universal gravitational constant and $\Delta \rho(x, y, z)$ is the change in the density distribution. The problem is closed imposing the condition of vanishing gravitational potential at infinity. Generally, the temporal gravity change δ g determined by differencing repeated gravity measurements is given by:

$$
\begin{equation*}
\delta g(x, y, z)=-\frac{\partial u}{\partial z}+\delta g_{0} \tag{2}
\end{equation*}
$$

where δg_{0} represents the "free air" gravity change accompanying the displacements of the observation site.

COMSOL is used to compute the gravity changes due to a sphere at a depth of 3000 m with a radius of 500 m (Fig. 1) and a density contrast $\Delta \rho$ of $200 \mathrm{~kg} / \mathrm{m}^{3}$ by solving the equation in (1).

Figure 1 - Computational domain to compute the gravity changes due to a horizontal infinite cylinder (2D problem) or to a sphere (2D axisymmetric problem).

The numerical solutions are compared with the analytical expression:

$$
\begin{equation*}
\delta g=G \Delta \rho V \frac{z}{\left(x^{2}+y^{2}+z^{2}\right)^{\frac{3}{2}}} \tag{3}
\end{equation*}
$$

COMSOL solution for the 2D axi-symmetry Poisson's equation does not fit the analytical solution. The error arose from the way COMSOL consider the 2D domain. Indeed, the 2D axi-symmetry model is a fully 2D model, which means COMSOL solves:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{\partial^{2} u}{\partial z^{2}}=4 \pi G \Delta \rho \tag{4}
\end{equation*}
$$

Considering the model set-up (Fig. 1), it represents the problem for solving the gravity filed due to an horizontal infinite cylinder (Fig. 2). The equation in a real 2D axi-symmetry problem, analogous to the 3D case, is instead given by:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial r^{2}}+\frac{1}{r} \frac{\partial u}{\partial r}+\frac{\partial^{2} u}{\partial z^{2}}=4 \pi G \Delta \rho \tag{5}
\end{equation*}
$$

For implementing correctly this equation the divergent term $1 / r$ has to be included in the equation as shown in the attached Gravity2D.mph file.

Figure 2 - Analytical solutions of the gravity field due to a sphere (axi-symmetry problem) and to an infinite cylinder (2D problem) are compared with the numerical solutions of COMSOL.

