## SOLVING FOR THE GRAVITY FIELD IN COMSOL

## Gilda Currenti

Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Etneo, Sezione di Catania

The gravity change, related to density redistribution, can be calculated by solving the following Poisson's differential equation for the gravitational potential *u*:

$$\nabla^2 u = -4\pi G \Delta \rho(x, y, z) \tag{1}$$

where *G* denotes the universal gravitational constant and  $\Delta \rho(x, y, z)$  is the change in the density distribution. The problem is closed imposing the condition of vanishing gravitational potential at infinity. Generally, the temporal gravity change  $\delta g$  determined by differencing repeated gravity measurements is given by:

$$\delta g(x, y, z) = -\frac{\partial u}{\partial z} + \delta g_0$$
<sup>(2)</sup>

where  $\delta g_0$  represents the "free air" gravity change accompanying the displacements of the observation site.

COMSOL is used to compute the gravity changes due to a sphere at a depth of 3000 m with a radius of 500 m (Fig. 1) and a density contrast  $\Delta \rho$  of 200 kg/m<sup>3</sup> by solving the equation in (1).



**Figure 1** – Computational domain to compute the gravity changes due to a horizontal infinite cylinder (2D problem) or to a sphere (2D axisymmetric problem).

The numerical solutions are compared with the analytical expression:

$$\delta g = G \Delta \rho V \frac{z}{\left(x^2 + y^2 + z^2\right)^{\frac{3}{2}}}$$
(3)

COMSOL solution for the 2D axi-symmetry Poisson's equation does not fit the analytical solution. The error arose from the way COMSOL consider the 2D domain. Indeed, the 2D axi-symmetry model is a fully 2D model, which means COMSOL solves:

$$\frac{\partial^2 u}{\partial r^2} + \frac{\partial^2 u}{\partial z^2} = 4\pi G \Delta \rho \tag{4}$$

Considering the model set-up (Fig. 1), it represents the problem for solving the gravity filed due to an horizontal infinite cylinder (Fig. 2). The equation in a real 2D axi-symmetry problem, analogous to the 3D case, is instead given by:

$$\frac{\partial^2 u}{\partial r^2} + \frac{1}{r} \frac{\partial u}{\partial r} + \frac{\partial^2 u}{\partial z^2} = 4\pi G \Delta \rho \tag{5}$$

For implementing correctly this equation the divergent term 1/r has to be included in the equation as shown in the attached Gravity2D.mph file.



**Figure 2** - Analytical solutions of the gravity field due to a sphere (axi-symmetry problem) and to an infinite cylinder (2D problem) are compared with the numerical solutions of COMSOL.