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1.

Volcano Deformation

Many volcanic eruptions are preceded by pronounced ground
deformation in response to increasing pressure from magma
chambers or to the upward intrusion of magma.

Surface deformation patterns can provide important insights into
the structure, plumbing, and state of restless volcanoes.

Surface deformation might be the first sign of increasing levels of
volcanic activity, preceding swarms of earthquakes or other
precursors that signal impending intrusions or eruptions.

Surface deformation provides a critical element on understanding
how a volcano work.



Deformation Source

defor mation:
what we see (InSAR) \

?

magma dynamics:
what we want to know

Magma intrusion




= USGS Deformation modeling
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where x7, X%, and x5 are horizontal locations and depth of the center of the sphere, R is the distance
between the sphere and the location of observation (x;, X, , and 0), and v is the Poisson’s ratio of host rock.

Best-fit source parameters:
* The model sourceislocated at a depth of 6.5+ 0.2 km.
» The calculated volume change of magma reservoir is 0.043 + 0.002 km?:




ZUSGS Deformation M odeling

Estimate source characteristics
from INSAR deformation data forward model
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Linear Inversion

design matrix— model! parameters obser‘ vations

|f the covariance matrix for errorsin the observation (b) is) ,, then
the weighted least-squares (maximum likelihood) solution for x is

| n the case where we assume that observation errorsare
Independent and have equal standard deviations, ¢ , we get

2

Thesquareroot of thediagonal termsgivethe standard errorsin
parameter estimates




Forward model

Predicts deformation (u) caused by magma intrusion
(relates magma intrusion to deformation)
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Forward model: point source

A component of defor mation vector (u;) and the displacement at the
free surface (x,=0) takestheform

X" Isa sourcelocation, C isacombination of material properties
and source strength, and R isthe distance from the sourceto the
surface location

Ap - changein pressure of magma chamber
AV - changein volume of magma chamber
v - Poisson’sratio

r,-radius of the sphere

G - shear modulus of country rock




Forward model: point source

image source
(0,0, d)
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Forward model: closed pipe
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Forward model: closed pipe

Isotropic elastic
half-space (G,v)
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Forward model: open pipe
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Forward model: sill
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Forward model: dike
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Forward model

A complex example:
viscoel astic shell surrounding magma chamber

Viscoelastic Chamber Fiz/Fi | = 1.2
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Deformation Source Models

Simple Source Models in Elastic Half-Space
e Spherical Point Source
 Prolate Ellipsoid
o Sill or Dike for volcanoes
e Penny-shaped Sill
* Pipe
* Dislocation for earthquakes

Complicating Effects u = f(model parameters,
» Non-uniform Elastic Structure |~ material properties,

* Topography )
* Viscoelasticity

« Poroelasticity

* Thermoelasticity

e Complex Geometry

* Influence of hydrothermal fluid




UGS Ultimate Goal of Deformation Modeling

Minimize

> [u (%, y) elos (X, y) —obs (x, y)]

U, iIsatheoretical calculation of ground surface defor mation vector (=1, 2, 3)
los Isthe INSAR line-of-sight vector

obs isthe observed deformation (INSAR image)

(X, y) Isthe image coordinate

Non-linear inversion!!!!




Find best-fit model parameters

1. loop through model parameters
o calculatetheresidual (observed — modeled)
for each set of model parameters

. find the set of model parametersthat renders

the smallest residual
=> pest-fit model parameters




=ses A simple matlab code for
deformation modeling

% Mogi_modeling.m
% define upper bounds of source parameters
ub =[216 232 7.0 -0.03 50 25 25];
X Y Z AV static term (or baseline_error_terms)
% define lower bounds of source parameters
Ilb =[196 112 20 -0.08 -50 -25 -25];

% READ “InSAR image and InNSAR geometry parameters *

SIMULATIONS = 10;

Z (depth)

.ﬁ. AV (volume change)




=ses A simple matlab code for
deformation modeling

% Mogi_modeling.m (cont’ d)

for i=1:SIMULATIONS
% generate random numbers between 0 and 1.0;
rand vec=rand(1, source parameter length);
diff vec=ub - Ib;
p_start=Ib + diff_vec*rand_vec;

[p_new, RESNORM, residual, EXITFLAG]=...
Isgnonlin(‘'mogi_func', p_start, Ib, ub, opts in);

end

% LSQNONLIN solvesnon-linear least squares problems.

% LSQNONLIN attempts to solve problems of the form:
min sum {FUN(X).A2}
% where X and the valuesreturned by FUN (new X) can be vectors or matrices.




=ses A simple matlab code for
deformation modeling

% mogi_func.m

function [residual] = mogi_func(X);

% Thisfunction will return a matrix of the residual (difference between the data
% and calculated range change).

%

% USEAGE: [residual] = mogi_func(X);

% INPUT: X isavector of Mogi source parameters

% OUTPUT: residual == a vector of observed data values minus model ed.

global eing vec ning vec obs phase plook

calc_phase=rngchn_mogi(X(2),X(1),X(3),X(4), ning_vec,eing_vec,plook);

AN

forward
model

residual= obs phase—calc_phase +X(5);




=ses A simple matlab code for
deformation modeling

% rngchn_mogi.m (forward model)
function [rng_change]=rngchn_mogi(nl,el,depth,del v,ning,eing,plook);
% USEAGE: [rng_change]=rngchn_mogi(nl1,el,depth,del v,ning,eing,plook);
% INPUT:
% nl=loca north coord of center of Mogi source (km)
% el =local east coord of center of Mogi source (km)
%  depth = depth of Mogi source (km).
% de_v=Volume change of Mogi source (km"3)
% ning = north coord's of pointsto calculate range change
% eing = east coord's of pointsto calculate range change
% OUTPUT: rng_change = range change at coordinates given in ning and eing.

X — X% forward

. . (1-v)
U (X — X, X, —X,,—X,) = AV ——=
I(Xl Xl 2 2 3) Pa ‘R?" model




Multiple Sources

o Superimposition of individual deformation
sources

e Smoothing (spatial + temporal)




a USGS
Spatial smoothing

= The total (a—a5)—(a5—as)+(a,—as)Has—as) = 0
displacement

on a given
patch...

...Is related to
that of
patches
adjacent to it,
by a finite-
difference
Laplacian
approximation

(schemaitic)

Courtesy of G. Funning



Sour ce parameter error estimates

*One approach of estimating parameter errors isMonte Carlo
simulation of correlated noise (Wright, Lu & Wicks, 2003).

*Multiple sets of correlated noise are simulated that have the
same covar iance function as observed in the data.

*A number of such data sets are added to the observation (e.q.,
INSAR phase changes).

Parameter errorsare determined from the distribution of the
best-fit solutionsto each of these noisy data sets.
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Volcano structure
Basic concepts

standard model

required assumptions:
homogeneous material properties
isotropic material properties
Poisson-solid
half-space

Cinder Cone Crater

Rock Fragments

gl T
.

~Composite
Volcano
Lava
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Finite element models
Simulate volcano structures

caldera

e

elasto-static behavior
d°U,
oX; Ay,
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Courtesy of T. Masterlark







Dynamic deformation of Seguam volcano

Seguam Volcano: Documented eruptions
occurred in 1786-1790, 1827, 1891, 1892, 1901,
1927, 1977, and 1992-1993.

Multi-temporal INSAR Images

-

Masterlark & Lu, 2004




Deformation Modeling

point expansion source array

INSAR image having
complex pattern
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Source cluster time series

Three clusters dominate, each having a
distinctive time-dependent behavior

cluster 1 (@P cluster 2 @
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Dominant Source Clusters

Three clusters dominate, each having a
distinctive time-dependent behavior

cluster 2 clusters

potential point sources... cluster 1 ’

Masterlark & Lu, JGR, 2004
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\ Boina dike

= Quaternary faults

‘ Magmatic centers

B L e S R
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Plateau
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Quaternary strain
localised to ~60
km long zones of
fissures, aligned
eruptive centers
and faults -
“magmatic
segments

Courtesy of T. Wright



14/9/2005 to 40
11/05/2005

163 earthquakes
(mb <6) detected
by NEIC.

Relocated by Anna
Stork
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USGS 3D displacements measured from radar data

Deflating
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Deformation Modelling

a Observed | b Modelled -
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"Model Elements |f
‘® Mogi Source ||
—Dvke. . . .

= Fault

Vertical (m)

+ 2.2 km3 magma intruded along dyke (Mt St Helens 1980 1.2 km3)
* 0.5 km3 sourced from Dabbahu and Gabho volcanoes at North.

» Earthquakes can be responsible for < 10 % of moment release.

Wright et al., Nature, 2005







Oct. 23 and Nov 3, 2002 Denali Earthquakes
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<USGS 2002 Dendll Fault Earthquakes
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INSAR Iimages: observed and modeled
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e Slip Distribution of Oct 23, 2002 Earthquake
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Model Parameter Error Bounds

*One approach of estimating parameter errorsis Monte Carlo
simulation of correlated noise (wright, Lu & Wicks, 2003).

*Multiple sets of correlated noise are simulated that have the
same covar iance function as observed in the data.

*A number of such data sets are added to the observation (e.q.,
INSAR phase changes).

Parameter errorsare determined from the distribution of the
best-fit solutionsto each of these noisy data sets.




Model Parameter Error Bounds
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ZUSGS 6 August 2007 Mine Collapse and M, 3.9 Earthquake >3

* A large and tragic collapse
occurred in the Crandall
Canyon coal mine on 6 Aug.
2007, causing the loss of 6
miners.

389°300"

 This collapse was
accompanied by a local
magnitude (M) 3.9 seismic
event having a location and
origin time coincident with
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Co-event: 06/08/2007 — 09/08/2007

A

0 oo 11.8 cm

QO - the epicenter from the standard relocation program.
O - the epicenter from a localized velocity structure.

O - the epicenter from the master-event method.

3% - the epicenter from the double-difference relocation method.

— - the damaged area by the MSHA




Deformation Modeling

The sharp break in phase gradient on the south edge of the deformation
signal is an important observation that is diagnostic of more than just a
simple collapse model for the deformation source.

INSAR data are parsed using a quad-tree algorithm.
Deformation is modeled with distributed dislocation (Okada) sources.

An adequate model is defined as one for which the variance of the
residual (observed data minus calculated) is reduced to the same
variance as the noise in the non-deforming area of the interferogram.




Observed Deformation

Range change (mm)

T aa———
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Modeled Deformation
Collapse-only sources

Range change (mm)

T a——

a0 0 20 100 150 200

* An adequate fit is only found where the depth of flat lying sources is less than ~100 m.
« The mine depth is know to be around 500 m.

 Therefore, a simple collapse model with spatially varying collapses cannot explain the
deformation field seen in the interferogram.




Modeled Deformation
Collapse sources + 40°-dipping fault

Range change (mm)

T ——

a0 20 100 150 200

 constraining the depth of flat lying collapse sources to be 500 m
» adding a shallow uniform slip normal fault that dips to the north.




Modeled Deformation
Collapse sources + 65°-dipping fault

Range change (mm)

T aa———

a0 0 50 100 150 200

e constraining the depth of a flat lying collapse source to be 500 m
 adding a shallow uniform slip normal fault that dips to the north.




Modeled Deformation
Collapse sources + a normal fault

We cannot well constrain the dip of the normal fault component of the
model.

At the 95% confidence level, a dip between 10° and 85° provides adequate

fit.
The top of the fault is shallow, shallower than 70 m and deeper than 20 m.

The ratio between the normal fault and the collapse component decreases
from about 2.5 at 20° dip to 0.3 at a dip of 85°; however, a model with a dip
of 85° for a normal fault is too steep to intersect the modeled collapse area.

The estimated geodetic moment (Mw4.5) is larger than seismic moment
(Mw4.1).




Our favorite model
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This book describes the techniques used by velcanologists to successiully predict several recent volcanic
eruptions by combining information from various scientific disciplines, including geodetic technigques
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