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• Eruption tremor
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Eruption tremor

Volcanic tremor that occurs during eruptions

Seismic: broadband signal with temporal variations linked to the 
mass eruption rate [McNutt, 2000; McNutt and Nishimura, 2008]

Acoustic: broadband signal which resembles jet noise [Matoza et 
al. 2009, Fee et al. 2010]
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path & site

Seismic harmonic tremor: source vs. path effects

Goldstein and Chouet [1994]

seismogram:

excitation/trigger crack/conduit resonance
path & site effects

source



Harmonic & monotonic tremor

Arenal, Costa Rica, Garces et al. [1998]
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Harmonic & monotonic tremor

Arenal, Costa Rica, Lesage et al. [2006]
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1. Crack waves

Chouet and Matoza [2013]Long-period (LP) seismic events

Solid-fluid interface waves in fluid-filled crack
in an elastic solid
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Resonance

Garces [2000]

Analytic solution for airborne sound 
from a resonant magma conduit

2. Conduit resonance

From: Buckingham and Garces [1996] 
to: Garces [2000]
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liquid magma/water
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Upper few tens of meters couple well into atmosphere



Resonance
2. Conduit resonance Key question #2: what drives the oscillation?

1. Bubble cloud oscillation [Chouet, 1996; Matoza et al. 2010]
2. Density-driven oscillations of the bubble column [Ripepe et al. 2010]

Ripepe et al. [2010] after Mudde [2005]

Villarrica, Chile
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Resonance

Matoza et al. [2010]

Broadband signal:
Bubble cloud 
oscillation?

Monotonic/bifurcating signal: 
Conduit resonance? Gas flow?
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Resonance
3. Helmholtz resonance of a conduit/cavity 

cross-sectional area of neck

effective neck length cavity volume

For wavelengths larger than the dimensions of the volume: 

Fee et al. [2010]



Resonance
3. Helmholtz resonance of a conduit/cavity 

Driving mechanism required!

Fee et al. [2010]



Resonance
4. Degassing through sealed caps

Valade et al. [2012]

e.g.,
Gil Cruz and Chouet [1997]
Hellweg [2000]
Johnson and Lees [2000]
Lesage et al. [2006]
Valade et al. [2012]

...can be coupled with 
and controlled by upper 
conduit/cavity resonance

Hagerty et al. [2000]
Lesage et al. [2006]
Matoza et al. [2010]



28 A. Hirschberg, C. Schram

Fig. 12. Human whistling is induced by the coupling of vortex shedding at our lips,
along with acoustical oscillations of our mouth. The lowest resonance frequency
corresponds to the Helmholtz resonance, at which the mouth volume acts as an
acoustical spring, and the narrowing at the lips acts as an acoustical mass.
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shear layer with a solid boundary 

2. Family of processes: edge tone, hole tone, 
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1. Introduction

The sound produced when a jet, issued from a circular nozzle or a hole in a plate, goes through
a second plate with a hole of the same diameter as the jet is referred to as the hole-tone. The
geometry of the problem is sketched in Fig. 1, which also shows the principal physical features. It
is widely accepted that the responsible mechanism is shear layer instability, and that the
characteristic, discrete tone is maintained by an acoustic feedback mechanism. This was suggested
already in 1896 by Rayleigh [1] (referring to the system as the ‘bird-call’), who explained the basic
mechanism as follows: ‘When a symmetrical excrescence [vortex ring]1 reaches the second plate, it
is unable to pass the hole with freedom, and the disturbance is thrown back, probably with the
velocity of sound, to the first plate, where it gives rise to a further disturbance, to grow in its turn
during the progress of the jet.’
Rayleigh also pointed out that the disturbances are axisymmetric (varicose). Later experiments

[2] verified this,2 and that the shear layer periodically rolls up into big, distinct vortex rings
(‘smoke rings’). It was furthermore found that the oscillations, caused by the impingement of
these vortex rings onto the end plate, occur in specific stages of approximately constant Strouhal
number St ¼ ðfrequencyÞ $ ðgap lengthÞ=ðaverage jet speedÞ; and that transference from one
stage to another is associated with hysteresis. In other words, the tone experiences jumps in the
frequency by increasing jet velocity, and the jumps back occur at other values when the velocity is
again decreased.

ARTICLE IN PRESS

Fig. 1. (a) Geometry and physical features of the hole-tone problem. (b) Flow visualization of the vortex roll-up.

1Added by the authors.
2Chanaud and Powell [2] wrote that, ‘The disturbances were found to be unambiguously symmetrical, as observed by

other investigators.’

M.A. Langthjem, M. Nakano / Journal of Sound and Vibration 288 (2005) 133–176 135

U mean jet velocity
L length-scale
M mach number 

Uc = KU 
Uc vortex convection velocity
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5.5. Tremor source considerations 189

signals were found empirically by Rossiter [1964] to agree with:

Stm =
(m� �)

( 1
K + M)

, (5.10)

where m is a mode number, m = 1, 2, 3, . . . , M is the Mach number (M = U/c0,

where U is the free-stream velocity of the flow and c0 is the sound speed), and K

and � are empirical constants, K, � < 1. Equivalently, the observed frequencies of

oscillation or Rossiter modes can be expressed as:

fm =
U

L

(m� �)

( 1
K + M)

. (5.11)

Rossiter [1964] further proposed that the constant K corresponds to the ratio of

the vortex convection velocity Uc to the free-stream velocity, i.e., Uc = KU , and

K is typically around ⇥0.4-0.6 for most processes [Howe, 1998]. � remains an

empirical constant, interpreted as a phase lag. The phase lag is due to both 1)

the time-delay between the vortex impingement on the solid boundary, and the

emission of the acoustic/hydrodynamic disturbance, and 2) the delay between the

arrival of the acoustic/hydrodynamic disturbance at the upstream shear-layer, and

the release of new vortices. Equation (5.11) can therefore be expressed in terms of

the physical parameters of the system:

L

Uc
+

L

c0
=

(m� �)

fm
, (5.12)

which is known as Rossiter’s equation [Howe, 1998]. Here, the quantity L/Uc

represents the time taken for a vortex to travel downstream from the source to

the impingement object, and L/c0 is the time taken for the acoustic disturbance

to travel upstream from the impingement object to the vortex source. Delprat

[2006] has further proposed that by setting m = 1 and � = 0, equation (5.12) can

be expressed in terms of the fundamental aeroacoustic loop frequency fa of the

feedback process:
L

Uc
+

L

c0
=

1

fa
. (5.13)

The phase shift � in equations (5.11) and (5.12) then results in the observed

Rossiter mode frequencies fm being o�set from integer multiples of the aeroa-

coustic loop frequency fa, as fm = (m� �)fa [Howe, 1998; Delprat, 2006].

Rossiter modes:

Langthjem and Nakano [2005]

Resonance
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Conclusions

• Tremor is multifarious

• It is a seismo-acoustic process:

• purely seismic         purely acoustic

• Resonance is inevitable in volcanic fluid systems

• But what is resonating? 

• What is driving the resonance?

• Coupled interactions between gas flow and resonance


