Monopole source applied to volcanic eruptions

Jeffrey Johnson Volcano Acoustics Workshop IAVCEI Kagoshima 2013

Simple acoustic monopole source* applied to volcanic eruptions:

Simplifications often invoked:

- Source is simple acoustic (i.e., point source or compact)
 -> characteristic wavelength is >> vent region (ka<<1)
- Propagation is simple acoustic (i.e., omnidirectional)
 -> raypaths spread radially
- Sound recorded is purely far-field term (kr>>1)
 -> pressure falls off as 1/r
- Propagation is linear
 - -> linear relation between stress and strain (no shock)

Assumptions lead to:

 Recorded pressure is proportional to volumetric acceleration of the atmosphere

Acoustic monopole source (sinusoid): $\delta p(r, t) = i\omega \rho_0 \frac{Q(t-r/c)}{\Omega r} e^{i\omega(t-r/c)}$

 $\delta p(r,t)$ is the excess pressure (in Pa)

r is the distance (m)

c is the sound speed (m/s)

 ρ_0 = density of air (kg/m³)

Q is the source strength (volumetric flux in m³/s)

 Ω is solid angle (4 π for whole space)

In terms of volume Flux: $\delta p(r, t) = \rho_0 \frac{\dot{Q}(t-r/c)}{\Omega r}$ where $\dot{Q} = \ddot{V}$ (volume acceleration)

 ρ_0 = density of air (kg/m³) \dot{Q} is 'alternative' source strength (volumetric acceleration in m³/s²)

Acoustic monopole source (sinusoid): $\delta p(r, t) = i\omega \rho_0 \frac{Q(t-r/c)}{\Omega r} e^{i\omega(t-r/c)}$

 $\delta p(r,t)$ is the excess pressure (in Pa)

r is the distance (m)

c is the sound speed (m/s)

 ρ_0 = density of air (kg/m³)

Q is the source strength (volumetric flux in m³/s)

 Ω is solid angle (4 π for whole space)

In terms of volume Flux: $\delta p(r, t) = \rho_0 \frac{\dot{Q}(t-r/c)}{\Omega r}$ where $\dot{Q} = \ddot{V}$ (volume acceleration)

 ρ_0 = density of air (kg/m³) \dot{Q} is 'alternative' source strength (volumetric acceleration in m³/s²)

More on this @: Gerst et al. (2013) The first second of volcanic eruptions from the Erebus Volcano lava lake, Antarctica - Energies, pressures, seismology, and infrasound, Journal of Geophysical Research, V. 118, 1-23

PRGME

Acoustic Monopole Source $\delta p(r, t) = \rho_0 \frac{\dot{Q}(t-r/c)}{2\pi r}$

 $\delta p(r,t)$ is the excess pressure (in Pa)

r is the distance and c is the sound speed

 \dot{Q} is the source strength (volumetric acceleration in m³/s²)

 $\Omega = 2\pi$ for hemispherical spreading

Event #1: occurring Jan 002 at 14:16:46

event #1: Jan002 14:16 time elapsed: 0.2 s

- ▲ 1 m uplift
- 0.5 m uplift
- 1 0.25 m downdrop

-10 10 20 30 0 event #1: Jan002 14:16 CAL 3 Pa time elapsed: 0.3 s DOM 3 Pa CAS ▲ 1 m uplift 1 Pa • 0.5 m uplift 1 0.25 m downdrop

-10 10 20 30 0 event #1: Jan002 14:16 CAL 3 Pa time elapsed: 0.3 s DOM 3 Pa CAS ▲ 1 m uplift 1 Pa • 0.5 m uplift 1 0.25 m downdrop

