Volcanic Jet Noise

David Fee Wilson Infrasound Observatory, Geophysical Institute, Alaska Volcano Observatory, University of Alaska Fairbanks

Robin Matoza Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA

Overview

Sustained, high-energy eruptions produce a low frequency form of jet noise

- Jet noise background
- Volcanic Jet Noise Observations
 - Regional (10-50 km)
 - Mount St. Helens
 - Tungurahua, Ecuador
 - Long-range (>250 km)
 - Kasatochi, Alaska
 - Supersonic Volcanic Noise and Directionality
- Conclusions/Future Work

Jet Noise Background

- Definition: sound produced by interactions between the turbulent exhaust flow and the ambient air
- Studied extensively for man-made jets
- Dominant noise sources related to turbulence structures within the jet
- Lighthill [1952]: primary sound source is smallscale eddies (fine-scale turbulence)
 - Acoustic power ~ v^8
- Shock cell structure: screech tones and broadband shock noise
- 1970's: large scale turbulence also important → dominate dynamics

Jet Noise Spectrum

Strouhal Number

• Jet noise scales via the Strouhal Number:

$$St = \frac{fD_j}{U_i}$$

f=the peak jet noise frequency, D_j =expanded jet diameter, U_j =jet velocity

• *St* for pure-air, experimental jets between 0.1-0.25

[Tam 09]

Volcanic Jet Noise

Jet (gas thrust):

- Momentum-driven
- Typically 1-3 km high
- Entrains air and transitions to buoyancydriven flow
- Poorly constrained

Turbulence-driven volcanic jet noise first proposed by Woulff and McGetchin [1976]

Difficult to record and much more complex than man-made jets

ASHE (Acoustic Surveillance for Hazardous Eruptions)

- Test viability of monitoring remote volcanic regions using infrasound
- Work with Washington DC Volcanic Ash Advisory Center (VAAC) to mitigate aviation hazard
- Mount St. Helens: arrays at 13 and 250 km
- Ecuador: arrays at 37 (RIOE) and 251 km (LITE)

Eruption Infrasound

Spectra

- MSH spectra resemble LST spectra
- Tungurahua similar spectra for all 3 eruptions, LST fits best
- "Notch" in Tungurahua spectra
- Roll-off for Tungurahua 7/14 and 8/17 does not match as well
- Complexities
 - Interactions with crater
 - Volcanic jets multiphase, high temp
 - Propagation
 - Anisotropic source
- Jetting coincident with high-altitude ash emissions

Strouhal Number: Mount St. Helens

 $St = \frac{fD_j}{U_j}$ $\int J_j \sim 100 \text{ m/s from ballistics}$ $\int D_j \sim 30 \text{ m} \quad [\text{Mastin 2007}]$ $\Rightarrow St \sim 0.06$

Strouhal Number: Tungurahua

$$St = \frac{fD_j}{U_j}$$

$$\int \frac{f^{-0.4} \text{ Hz}}{U_j \sim 300 \text{ m/s from ballistics}}$$

$$\int \frac{D_j \sim 300-400 \text{ m from video}}{\Rightarrow St \sim 0.4}$$

Matoza et al. [2009]

Tungurahua IR Images

15 July Tungurahua Jetting Spectrum

Typical double-peaked spectrum during sustained column above vent and intermittent pyroclastic density currents (PDC) (dashed line in a)

Single-peaked spectrum when large PDC and no sustained vertical column (solid black line in a) and thermal image in b)

- \rightarrow First peak does not require vertical eruption column
- → Two separate jet noise sources?
 - Interactions with crater may be important

Propagation Effect?

Compare Tungurahua spectra at 37 and 251 km

- PSD Probability Density Functions
- Main spectral features apparent at 251 km

Kasatochi, Alaska

Extend ASHE to greater distances

- Viability of volcano monitoring
- Interest in using global network
- Identification of jet noise at distance?

Kasatochi Volcano

- Erupted August 7th-9th, 2008
- Previously unmonitored
- Ash to ~55,000' (17 km)
- Most SO₂ since 1991
- Disrupted N Pacific air travel

Kasatochi Infrasound

Black = Correlated Signal from Kasatochi **Red** = Uncorrelated Noise

Kasatochi PSD

Nabro – Supersonic Jet Noise

- All three waveforms have high positive skewness values
- PDFs all have long positive tails
- Rocket and Nabro show strongest similarity
- Rocket data from [Gee et al., 2009]

Jet Noise Directionality

Woulff and McGetchin [1976]: volcanoes generate 3 basic types of sound Acoustic monopoles (n=4), dipoles(n=6), and quadrupoles (n=8)

Results from pure-air jet noise studies:

Acoustic power estimates require sampling of jet directionality

Conclusions

- Sustained, high-energy eruptions produce a low frequency form of jet noise
 - Identifiable based on spectral shape
 - Coincident with high-altitude ash emissions
 - Fit to spectrum is not perfect
 - *St* between 0.06-0.4
- Jet noise recordings could lend insight into volcanic jets (e.g. velocity, diameter) and assist in hazard mitigation
- Characteristic jet noise spectrum identifiable at long distances
- Supersonic jet noise also observed
- Jet noise directionality is significant

Future Work

- Build up catalog of volcanic jetting
- Compare infrasonic observations with numerical and laboratory modeling
- Better source localization and characterization
- Constrain impact of multi-phase flow, craters, etc.

Kasatochi: Satellite Imagery

