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Introduction A\
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White Island is New Zealand’s most active volcano and primarily characterised by ~

phreatic and phreatomagmatic eruptions. A phreatic eruption on August 2",
2012 ended an eleven year quiescence. More than 100 years of intense Auckland
hydrothermal activity from magmatic fluids and groundwater has created a weak
and unstable volcanic edifice highly susceptible to sector collapses and landslides.
This study is an experimental approach to constrain phreatic eruption processes , |
under various conditions. Furthermore, we analyze rock mechanical properties of - ’
a set of samples subjected to an active hydrothermal system and link these
propertiestothe fragmentation behaviour.
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Fig. 1: Location map showing White Island approx. 50 km offshore in the Bay of Plenty, New Zealand. (Photo taken by B. Scheu 2010)

Sample characterisation

Density [g/cm3] 2.31 2.18 2.71 1.97 2.50 2.68
Two ash tuffs with different grades of alteration, sulfur-rich and | Porosity (open) [%] | 31.86 46.78 22.19 28.19 34.86 26.13
iron-rich crusts from the surface of a fumarole field and a stream ore 7 -15 -14 12 12 12 220
ed channel. as well as ash/laoili from the crater floor and clay | PErMeability [m’]  2.76x10 3.14x10 2.84x10 1.05x10 3.36x10 8.71x10
from the Donald Duck explosion crater were sampled and | UCS [MPa] 11.04 5.9/ 6.50 1.93 n.m. n.m.
investigated to constrain the conditions for phreatic eruptions.

WI 21 ash tuff WI 22 ash tuff WI 25 iron-rich crust | WI 26 sulfur-rich crust WI 27 ash /IapiIIi I 27 volcanic clay

The geochemical analysis (XRF and XRD) showed, that the ash tuffs do not
preserve any primary minerals or glass but are entirely altered. They contain high
proportions of amorphous silica, alunite, kaolinite and other minerals, typical for
hydrothermal alteration as well as high sulfur contents.

In addition some rock mechanical parameters have been determined at EOST
(University of Strasbourg). By using an uniaxial compression apparatus, stress, axial
strain, and the output of acoustic emission energy during experimentation could
be measured under a variety of loading and under dry and wet environmental
conditions.

The altered and heterogeneous ash tuffs are less permeable, slightly stronger, even
though more porous than the crusts. Ash/lapilli and the volcanic clay have the
highest, respectively lowest permeabilty of all investigated samples.
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Phreatic eruptions experiments Fragmentation speed Ejection behaviour
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, _ . . . » The ejection velocity of particles increases with applied pressure and
The fragmentation threshold is the minimum pressure difference leading to complete oorosity as well as water saturation of samples.
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