OBSERVATIONAL CONSTRAINTS FOR LAVA FLOW MODELS

Einat Lev, LDEO IAVCEI Benchmarking Workshop Kagoshima, 2013

WILL DISCUSS CONSTRAINTS FROM:

Natural Flows

Analogue Experiments

Basaltic

Experiments

WILL DISCUSS CONSTRAINTS FROM:

Natural

Flows

Analogue Experiments

Basaltic

Experiments

FIELD OBSERVATIONS - VELOCITY

Lev et al., 2012

FIELD OBSERVATIONS - VELOCITY

Lev et al., 2012

FIELD OBSERVATIONS – VELOCITY

Lev et al., 2012

FIELD OBSERVATIONS – CRUST COVER

from: Italy's Volcanoes: The Cradle of Volcanology

Cashman et al., 2006

FIELD OBSERVATIONS – CHANNELS

Observables include:
Flow morphology
Channel morphology
Crust cover

Bifurcation on many levels

A

er2007 obstac

FIELD OBSERVATIONS – THERMAL DATA

Pahoehoe channel+ropes

Kilauea (E. Lev)

Discontinuous advance – crust breakage

Kilauea (M. Ramsey)

A'a channel+front, Etna (M. James)

FIELD OBSERVATIONS – VISCOSITY

1558 VOLCANISM IN HAWAII											Piston Spring Linear potentiometer
IABLE 57.3. — Dimensions and characteristics of lawa channels and their changes with time, 1984 Mauna Loa eruption [Locations of channel stations on figure 57.1B. Distance, spacing of measuring points along channel bank. Depths estimated; see text for details. PWL, Peter W. Lipman; NGB, Norman G. Banks]								r changes estimated; s	with time, 1 ee text for det	984 Mauna Loa eruption ails. PWL, Peter W. Lipman; NGB, Norman G. Banks]	
Measurement	Date (mo/d)	Hour (H.s.t.)	Condition	Distance (m)	Time (s)	Velocity (m/s)	Width (m)	Depth (m)	Flow rate (10 ⁶ m ³ /h)	Comments	
				Station	1: Lower	channel 1	A, elevat	ion 1,600	m		
1	3/31 3/31	1130 1200	stable surge	18 18	19 22	0.95 .82	24 24	5	0.410 .355	Conspicuous marginal shears, with velocities about 1 m/min, next to central well-defined channel. Channel velocities slow during surges which contain more viscous material. Maximum velocities occur just after surges. Gradient about 3°.	a Recorder
3	4/01 4/01	1200 1300	Ξ	18 18	28 30	.64 .60	35 35	5	.405 .385	Measured of FW1, NUD, and J-Fins. Channel less defined than on 3/31, more chaed with defined than the state of the state of the state (about 57) has migrated about 50 m downitream, adjacent to measurement site, velocities have still slowed. Because channel zone seems wider, flow rates have changed less than velocities. Measured	
5	4/02 4/02	1200 1230	full low	15 15	60 110	.25 .14	40 40	6	.215 .120}	by PWL and E. Wolfe. Channel less well defined than on 4/01, and choked with rubble; velocities much slowed. Measured by	
7 8	4/03 4/03 4/03	1520 1550 1645	slow normal surge	25 25 25	140 80 90	.18 .31 78	52 52 52	5 5 7	.170 .290	FWL, J. Fink, and H. Moore. New station; old one unusable because of inboard levees. Top of active channel varies, 3 m below to I m above levees. Gradient 4 5°	A B E E
10	4/04	1350		25	163	.15	50	5	.138	Measured by NGB. Measured by NGB.	
	Station 2: Upper channel 1A, elevation 1,700 m										З \ G H З
11	4/03	1430	stable	15	45	.33	50	ş	.295]	Measured by PWL, J. Fink, and H. Moore.	
13 14 15	4/04 4/04 4/04	1345 1430 1500	stable stable surge	15 15 15	45 40 25	.30 .3 .4 .6	25 25 25	5555	.150 .170 .270	Sensitive to release of ponded lava at 1,800-m blockage. Surge provides upper limit in flow rate; estimates for stable periods likely to be more meaningful. Gradient about 4°. Measured by PWL, T. Neal, and H. Moore.	Sparks, 1978 b
Station 3: Lower Powerline Road (flow 1, south side), elevation 1,800 m											
16 17	3/28 3/28	1310-13 1535-16	335 505	73 73	84 80	0.87 .91	75 75	5	1.20 1.25	Depth fluctuations of as much as 2-3 m in 5 min, associated with surges; channel in two branches- only southern strand measured; channel broad, measured by visual aerial comparison with distance between power poles. Channel gradient about 2.5°.	¹⁰⁰⁰] a
			1992-1992	Station 3. Lo	wer Power	dine Road	(flow 1R)	elevation	1 800 m	Measured by PWL and D. Clague.	1 0
18	4/06	1400		25	210	0.12	25	4	0.043	The channel flow slowed, and its upper surface	800 0
			-		210			•	0.013	subsided as we made these measurements. When checked as hour later, the head of flow IB was captured by other overflows, and its channel was drained and empty. Gradient: 2.5°. Measured by PWL and T. Neal.	a.s)
Station 4: Upper Powerline Road (site 1), elevation 1,900 m											÷ 600 - //
19 20	3/29 3/29	1300 1400	blocks fragments	30.2 30.2	25 18	1.20 2.75	13 13	6 6	0.335 .470	Channel is within a gentle stretch related to large overflows and temporary ponding; probably deep as result. Higher velocities in center channel tend to push blocks to sides; more consistent measurements of maximum velocities obtained from small fragments in center channel. Channel gradjent about 2.5. Measured by PWL and E.	400 - Keon 1800; 400 -
22	3/31 3/31	1430 1530	stable low	30.2 30.2	23 18	1.3 1.7	13 13	6	.365 .470}	Autone: All measurements on small fast-moving fragments in center channel; lower level at 22 (about 1 m below levees) because of slightly higher gradient after drainage of ponded blockage downchannel. Gradient about 2.5°. Measured by PWL, NGB, and	
23	4/01	0830	stable	30.2	18	1.7	13	6	.470	J. Fulk. Channel is sluggish and viscous; shear and pressure ridges are weakly developed on nearly stampant	
25	4/02	1700		30.2	31	1.0	15	7	.370	channel sides. Measured by PWL and E. Wolf. Levees have increased in height about 2 m and largely obscure view of the channel: could only measure	
26	4/03	1000	-	30.2	32.1	.94	18.3	7	.431	large boats during high stand of channel. Measured by PWL, J. Fink, and H. Moore. Levee height is 2.3 m above top of old ponded broad as channel. Surge caused spreading of levee by 1 m in 15 min. Measured by NGB.	⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ⁰ ¹ <t< th=""></t<>
				Station 4: U	pper Pow	erline Road	l (site 2),	elevation	1,930 m		Distance from Vent (km)
27	4/02	1600	-	20	9.5	2.1	14	4	0.455	New site, above upper cascade. Gradient about 3.5°. Measured by PWL, J. Fink, and H. Moore.	
28	4/03	1320	-	20	12.6	1.6	14	5	.399	Measured by NGB.	
29	4/04	1200	-	Station 4: Up 23	12.3	1.9	(site 2A) 15	s elevation	0.500 m	Measured lava boats; low gradient due to blockages at head of middle cascade. Measured by PWL, T. Neal, and H. Moore.	> 30 Mauna Los
				Station 4: U	pper Pow	erline Road	l (site 3),	elevation	1,900 m		20] 9790
30 31 32 33	4/04 4/04 4/04 4/05	1120 1130 1140 1100	boats fragments fragments, 	20 20 surge 20 20	7.5 8.1 7.2 9	2.7 2.5 2.8 2.2	15 15 15 20	4	0.580 .530 .600 .640	Boats are sparse; channel level is 0.5-1 m below recent levee overflows. Gradient about 3°. Measured by PWL. T. Neal, and H. Moore. Little change since yesterday. Channen low and boats sparse, indicative of pound and surge forming upchannel. Measured by PWL and H. Moore.	10 0 10 0 10 20 30 40 50 Distance from Vent (km)
											Kiker et al. 20

Lipman and Banks, 1987

FIELD OBSERVATIONS - VISCOSITY

TABLE 57.3. — Dimensions and characteristics of lava channels and their changes with time, 1984 Mauna Loa eruption

[Locations of channel stations on figure 57.1B. Distance, spacing of measuring points along channel bank. Depths estimated; see text for details. PWL, Peter W. Lipman; NGB, Norman G. Banks]

Lipman and Banks, 1987

FIELD OBSERVATIONS - CRYSTALS AND BUBBLES

Kilauea 1859 flow

WILL DISCUSS CONSTRAINTS FROM:

Natural Flows

Analogue Experiments

Basaltic

Experiments

Isothermal

Osmond & Griffiths 1998)

Kaolin/water slurry, slope b=12 deg

Kaolin/PEG slurry, slope b=18 deg

With crystals

Castruccio et al., 2010

With cooling and crusting

Griffiths et al., 2003

ANALOGUE EXPERIMENTS – COMPLEX GEOMETRIES

Dietterich and Cashman

18 1860

ANY 8

Lyman et al. 2005

Lyman et al. 2005

Discontinuous advance – Crustal breakage

Blake and Bruno, 2000

WILL DISCUSS CONSTRAINTS FROM:

Natural Flows

Analogue Experiments

Basaltic

Experiments

BASALT EXPERIMENTS

BASALT EXPERIMENTS

Source material – Mid-continent Basalts

Table 1. Representative analyses of basalt and seen Falls and Clam Falls region.

				_
	basalt	basalt	basalt	_
	KC-1b	KC-7	KC-70	
SiOa	47.60	48 30	48.13	
TiO	1.69	1.71	2.64	
Al_2O_3	15.57	15.65	14.07	
Fe ₂ O ₃	13.34	13.61	16.40	
MnO	0.19	0.19	0.21	
MgO	7.48	6.69	5.17	
CaO	8.14	9.56	8.41	10.00
Na ₂ O	2.38	2.60	2.45	K CLES
K ₂ Ō	1.13	0.55	1.43	100
P_2O_5	0.16	0.19	0.31	
LOI	3.09	1.63	1.25	
Total	100.77	100.68	100.47	
Mg#	0.57	0.43	0.42	

Institute of Lake Superior Geology Field trip guide, 1998

Unconfined flows on sand

Unconfined flows on sand

Unconfined flows on sand

Channelized flows on steel

Flows with Obstacles

BASALT EXPERIMENTS – THERMAL EVOLUTION

<image>

oС Spot652 738 100.0**\$FLIR**

SUMMARY

Models & tests should utilize <u>quantitative input conditions</u> and reproduce <u>quantitative output observations</u>:

INPUT

Rheology

Effusion rate

Thermal model

Ground geometry

OUTPUT

Velocity Morphology Advance with time Temperature with time (vesicularity, crystallinity)