Tephra as a measure of land surface resilience
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Spatial patterns and 3D reconstructions of tephra layers Conclusion
| These findings have implications for understand-
Fieldwork in 2014 collected gridded  Tephra thickness from the 2011 Thickness of Sediment accumulated ing contemporary land surface resilience in areas
measurements of tephra, sediment eruption measured over a 30 x between eruptions of Grimsvotn in of tephra fallout but could potentially be applied
and vegetation at six sites in orderto 30 m grid. 1935 and 2011, showing a strong to the considerable stratigraphic archive of
create 3D reconstructions of tephra gradient orientated towards the cm-scale past tephra layers, giving us qualitative
layers and determine the role of veg- sandur plain (a major source of sedi- information on the state of the land surface the
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