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OBJECTIVES AND METHODS

. Cryptotephra (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe and there is no a

priori reason why a crypto-tephrostratigraphy cannot be developed for eastern North America.

. Five cores from ombrotrophic peat bogs in Michigan, upstate New York and Maine (right), were examined to test the feasibility of building a teph-

rostratigraphic framework for this region, while correlating the detailed paleoclimate records found in each core.

. Initial examination was by mounting loss on ignition (LOI) samples at 1 to 3 cm resolution on slides and examining by light microscope.

. Peaks were sub-sampled from the original cores and shards were extracted from the peat through a modified floatation method (e.g. Blockley et al.,

2005).

. Samples were mounted in acrylic pucks and analyzed by electron probe micro-analyses (EPMA). Conditions used were as follows: 10 um beam, 6

nA current and 15 keV voltage.

. Several samples were analyzed concurrently with reference material of suspected correlatives (White River Ash east and Mazama). All samples

were analyzed with secondary standards Old Crow tephra and ID3506, a Lipari obsidian.
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