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OBJECTIVES AND METHODS

1. Cryptotephra (tephra not visible to the naked eye) form the foundation of the tephrostratigraphic frameworks used in Europe and there is no a 
priori reason why a crypto-tephrostratigraphy cannot be developed for eastern North America. 

2. Five cores from ombrotrophic peat bogs in Michigan, upstate New York and Maine (right), were examined to test the feasibility of building a teph-
rostratigraphic framework for this region, while correlating the detailed paleoclimate records found in each core. 

3. Initial examination was by mounting loss on ignition (LOI) samples at 1 to 3 cm resolution on slides and examining by light microscope.   

4. Peaks were sub-sampled from the original cores and shards were extracted from the peat through a modified floatation method (e.g. Blockley et al., 
2005).  

5. Samples were mounted in acrylic pucks and analyzed by electron probe micro-analyses (EPMA). Conditions used were as follows: 10 μm beam, 6 
nA current and 15 keV voltage.     

6. Several samples were analyzed concurrently with reference material of suspected correlatives (White River Ash east and Mazama). All samples 
were analyzed with secondary standards Old Crow tephra and ID3506, a Lipari obsidian.
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RESULTS AND DISCUSSION

1. Detailed examination of each core shows that all contain multiple tephra horizons 
spanning from the early Holocene (left)

2. Age control, glass shard morphology, and initial major-element geochemical analy-
ses confirm the presence of Mazama (~7600 yr BP; Zdanowicz et al., 1999) at the base 
of Irwin Smith, and White River Ash, eastern lobe (WRAe; AD 833-850; Jensen et al., 
in press), in Irwin Smith and Bloomingdale (Fig. 1, 2). WRAe is also likely present in 
Saco, Great Heath and Sydney Bogs.

3. UNK1 appears to be as widely distributed in this area as WRAe, and may correlate 
to the Newberry 1400 cal yr BP event (Fig. 3). Morphological and age data from 
Great Heath and Saco Bog indicates WRAe and UNK1 are also present at these sites. 
Slight variation between UNK1 and reference samples may be because they are 
from different analytical runs.

4. UNK2 displays characteristics that suggest it may be from Mono Crater, and age 
models confirm that this is a possibility (Bursik et al., 2014). The offset between this 
particular Mono Crater sample and UNK2 in the FeOt biplot suggests they do not 
match, but all other oxides plot closely, thus re-analyses of both samples under the 
same instrumental conditions is necessary.

5. UNK3 appears to be a Glacier Peak tephra, although only 6 shards were success-
fully analyzed. Age models and initial chemistry suggest that the “Dusty Creek as-
semblage”  (~5800 cal yr BP; Foit et al. 2004) may be a possibility.

6. Major-element geochemical analyses are required to characterize the remaining 
tephra, but peaks are present at time intervals where other studies have identified 
Mount St. Helens layer T (Mackay unpublished data), St. Helens We, East Lake and 
Aniakchak (Pyne-O’Donnell et al., 2012). Additional horizons are present around the 
time of several other known large eruptions from the Cascades and Alaskan volca-
noes, such as St. Helens set Y, Hayes (i.e. Jarvis tephra), and Augustine (G, C and I). 

7. Finally, in light of the recent correlation of WRAe to the European crypto-tephra 
AD860B (Jensen et al., in press), “unconventional” distal sources cannot be dis-
counted, such as Kamchatka, Mexico and Japan.
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